Advertisement

Beta and neutrinoless double beta decays with KeV sterile fermions

  • Asmaa Abada
  • Álvaro Hernández-Cabezudo
  • Xabier MarcanoEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

Motivated by the capability of the KATRIN experiment to explore the existence of KeV neutrinos in the [1 − 18.5] KeV mass range, we explore the viability of minimal extensions of the Standard Model involving sterile neutrinos (namely the 3 + N frameworks) and study their possible impact in both the beta energy spectrum and the neutrinoless double beta decay effective mass, for the two possible ordering cases for the light neutrino spectrum. We also explore how both observables can discriminate between motivated low-scale seesaw realizations involving KeV sterile neutrinos. Our study concerns the prospect of a Type-I seesaw with two right-handed neutrinos, and a combination of the inverse and the linear seesaws where the Standard Model is minimally extended by two quasi-degenerate sterile fermions. We also discuss the possibility of exploring the latter case searching for double-kinks in KATRIN.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  2. [2]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  3. [3]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  4. [4]
    S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].Google Scholar
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].
  9. [9]
    A. Kusenko, B.P. Mandal and A. Mukherjee, Delayed pulsar kicks from the emission of sterile neutrinos, Phys. Rev. D 77 (2008) 123009 [arXiv:0801.4734] [INSPIRE].ADSGoogle Scholar
  10. [10]
    K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [INSPIRE].ADSGoogle Scholar
  11. [11]
    K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].
  12. [12]
    K.N. Abazajian, Sterile neutrinos in cosmology, Phys. Rept. 711-712 (2017) 1 [arXiv:1705.01837] [INSPIRE].
  13. [13]
    M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal flavour seesaw models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Ibarra, E. Molinaro and S.T. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010)108 [arXiv:1007.2378] [INSPIRE].
  15. [15]
    A. Donini, P. Hernández, J. Lopez-Pavon and M. Maltoni, Minimal models with light sterile neutrinos, JHEP 07 (2011) 105 [arXiv:1106.0064] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Abada and M. Lucente, Looking for the minimal inverse seesaw realisation, Nucl. Phys. B 885 (2014) 651 [arXiv:1401.1507] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].
  18. [18]
    E.K. Akhmedov, V.A. Rubakov and A. Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
  19. [19]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Abada, V. De Romeri, M. Lucente, A.M. Teixeira and T. Toma, Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays, JHEP 02 (2018) 169 [arXiv:1712.03984] [INSPIRE].
  21. [21]
    T.A. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].
  22. [22]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  23. [23]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Dentler et al., Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos, JHEP 08 (2018) 010 [arXiv:1803.10661] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P.S.B. Dev, A. Pilaftsis and U.-K. Yang, New production mechanism for heavy neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    LBNE collaboration, The Long-Baseline Neutrino Experiment: exploring fundamental symmetries of the universe, arXiv:1307.7335 [INSPIRE].
  28. [28]
    W. Bonivento et al., Proposal to search for heavy neutral leptons at the SPS, arXiv:1310.1762 [INSPIRE].
  29. [29]
    A. Blondel et al., Research proposal for an experiment to search for the decay μeee, arXiv:1301.6113 [INSPIRE].
  30. [30]
    A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s}=8 \) TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].
  34. [34]
    S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of heavy neutrino searches at future lepton colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from Wγ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Arganda, M.J. Herrero, X. Marcano and C. Weiland, Exotic μτjj events from heavy ISS neutrinos at the LHC, Phys. Lett. B 752 (2016) 46 [arXiv:1508.05074] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Das and N. Okada, Improved bounds on the heavy neutrino productions at the LHC, Phys. Rev. D 93 (2016) 033003 [arXiv:1510.04790] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-automated precision predictions for heavy neutrino production mechanisms at hadron colliders, Phys. Rev. D 94 (2016) 053002 [arXiv:1602.06957] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R. Ruiz, M. Spannowsky and P. Waite, Heavy neutrinos from gluon fusion, Phys. Rev. D 96 (2017) 055042 [arXiv:1706.02298] [INSPIRE].
  40. [40]
    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton number violation: seesaw models and their collider tests, Front. Phys. 6 (2018) 40 [arXiv:1711.02180] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    S. Pascoli, R. Ruiz and C. Weiland, Safe jet vetoes, Phys. Lett. B 786 (2018) 106 [arXiv:1805.09335] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R.E. Shrock, New tests for and bounds on, neutrino masses and lepton mixing, Phys. Lett. B 96 (1980) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    KATRIN collaboration, KATRIN: a next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, hep-ex/0109033 [INSPIRE].
  44. [44]
    KATRIN collaboration, KATRIN design report 2004, FZKA-7090, (2005) [INSPIRE].
  45. [45]
    S. Mertens et al., Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos, JCAP 02 (2015) 020 [arXiv:1409.0920] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Mertens et al., Wavelet approach to search for sterile neutrinos in tritium β-decay spectra, Phys. Rev. D 91 (2015) 042005 [arXiv:1410.7684] [INSPIRE].ADSGoogle Scholar
  47. [47]
    KATRIN collaboration, Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay, Phys. Procedia 61 (2015) 267 [INSPIRE].
  48. [48]
    N.M.N. Steinbrink, J.D. Behrens, S. Mertens, P.C.-O. Ranitzsch and C. Weinheimer, keV-scale sterile neutrino sensitivity estimation with time-of-flight spectroscopy in KATRIN using self-consistent approximate Monte Carlo, Eur. Phys. J. C 78 (2018) 212 [arXiv:1710.04939] [INSPIRE].
  49. [49]
    A.S. Riis and S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, JCAP 02 (2011) 011 [arXiv:1008.1495] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    J.A. Formaggio and J. Barrett, Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment, Phys. Lett. B 706 (2011) 68 [arXiv:1105.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Esmaili and O.L.G. Peres, KATRIN sensitivity to sterile neutrino mass in the shadow of lightest neutrino mass, Phys. Rev. D 85 (2012) 117301 [arXiv:1203.2632] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile neutrino dark matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Hernández, M. Kekic and J. Lopez-Pavon, N eff in low-scale seesaw models versus the lightest neutrino mass, Phys. Rev. D 90 (2014) 065033 [arXiv:1406.2961] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R. Shrock, Decay L 0ν γ in gauge theories of weak and electromagnetic interactions, Phys. Rev. D 9 (1974) 743 [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Loewenstein, A. Kusenko and P.L. Biermann, New limits on sterile neutrinos from Suzaku observations of the Ursa Minor dwarf spheroidal galaxy, Astrophys. J. 700 (2009) 426 [arXiv:0812.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Loewenstein and A. Kusenko, Dark matter search using XMM-Newton observations of Willman 1, Astrophys. J. 751 (2012) 82 [arXiv:1203.5229] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. Gelmini, S. Palomares-Ruiz and S. Pascoli, Low reheating temperature and the visible sterile neutrino, Phys. Rev. Lett. 93 (2004) 081302 [astro-ph/0403323] [INSPIRE].
  58. [58]
    G. Gelmini, E. Osoba, S. Palomares-Ruiz and S. Pascoli, MeV sterile neutrinos in low reheating temperature cosmological scenarios, JCAP 10 (2008) 029 [arXiv:0803.2735] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F. Bezrukov, A. Chudaykin and D. Gorbunov, Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology, JCAP 06 (2017) 051 [arXiv:1705.02184] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    P. Benes, A. Faessler, F. Simkovic and S. Kovalenko, Sterile neutrinos in neutrinoless double beta decay, Phys. Rev. D 71 (2005) 077901 [hep-ph/0501295] [INSPIRE].
  61. [61]
    M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    S.M. Barr, A different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].
  63. [63]
    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
  64. [64]
    D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  66. [66]
    M.C. Gonzalez-Garcia and J.W.F. Valle, Fast decaying neutrinos and observable flavor violation in a new class of majoron models, Phys. Lett. B 216 (1989) 360 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small lepton number violation?, JCAP 12 (2017) 024 [arXiv:1709.00415] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Barry, J. Heeck and W. Rodejohann, Sterile neutrinos and right-handed currents in KATRIN, JHEP 07 (2014) 081 [arXiv:1404.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    W. Rodejohann and H. Zhang, Signatures of extra dimensional sterile neutrinos, Phys. Lett. B 737 (2014) 81 [arXiv:1407.2739] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P.O. Ludl and W. Rodejohann, Direct neutrino mass experiments and exotic charged current interactions, JHEP 06 (2016) 040 [arXiv:1603.08690] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    H.J. de Vega, O. Moreno, E.M. de Guerra, M.R. Medrano and N.G. Sanchez, Role of sterile neutrino warm dark matter in rhenium and tritium beta decays, Nucl. Phys. B 866 (2013) 177 [arXiv:1109.3452] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    C. Kraus et al., Final results from phase II of the Mainz neutrino mass search in tritium beta decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [INSPIRE].
  73. [73]
    Troitsk collaboration, An upper limit on electron antineutrino mass from Troitsk experiment, Phys. Rev. D 84 (2011) 112003 [arXiv:1108.5034] [INSPIRE].
  74. [74]
    J.N. Abdurashitov et al., First measurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment, Pisma Zh. Eksp. Teor. Fiz. 105 (2017) 723 [JETP Lett. 105 (2017) 753] [arXiv:1703.10779] [INSPIRE].
  75. [75]
    W. Rodejohann, Neutrino-less double beta decay and particle physics, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].
  76. [76]
    F.F. Deppisch, M. Hirsch and H. Pas, Neutrinoless double beta decay and physics beyond the Standard Model, J. Phys. G 39 (2012) 124007 [arXiv:1208.0727] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S.M. Bilenky and C. Giunti, Neutrinoless double-beta decay: a probe of physics beyond the Standard Model, Int. J. Mod. Phys. A 30 (2015) 1530001 [arXiv:1411.4791] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    H. Päs and W. Rodejohann, Neutrinoless double beta decay, New J. Phys. 17 (2015) 115010 [arXiv:1507.00170] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].Google Scholar
  80. [80]
    KamLAND-Zen collaboration, Limit on neutrinoless ββ decay of 136 Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76 Ge, Phys. Rev. Lett. 110 (2013) 062502 [arXiv:1211.3863] [INSPIRE].
  81. [81]
    KamLAND-Zen collaboration, Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [Addendum ibid. 117 (2016) 109903] [arXiv:1605.02889] [INSPIRE].
  82. [82]
    GERDA collaboration, Improved limit on neutrinoless double-β decay of 76 Ge from GERDA phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
  83. [83]
    Majorana collaboration, Search for neutrinoless double-β decay in 76 Ge with the Majorana demonstrator, Phys. Rev. Lett. 120 (2018) 132502 [arXiv:1710.11608] [INSPIRE].
  84. [84]
    EXO-200 collaboration, Search for neutrinoless double-beta decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].
  85. [85]
    EXO-200 collaboration, Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].
  86. [86]
    EXO collaboration, Search for neutrinoless double-beta decay with the upgraded EXO-200 detector, Phys. Rev. Lett. 120 (2018) 072701 [arXiv:1707.08707] [INSPIRE].
  87. [87]
    CUORE collaboration, First results from CUORE: a search for lepton number violation via 0νββ decay of 130 Te, Phys. Rev. Lett. 120 (2018) 132501 [arXiv:1710.07988] [INSPIRE].
  88. [88]
    CUPID-0 collaboration, First result on the neutrinoless double-β decay of 82 Se with CUPID-0, Phys. Rev. Lett. 120 (2018) 232502 [arXiv:1802.07791] [INSPIRE].
  89. [89]
    W. Maneschg, Present status of neutrinoless double beta decay searches, in Proceedings, Prospects in Neutrino Physics (NuPhys2016), London, U.K., 12–14 December 2016 [arXiv:1704.08537] [INSPIRE].
  90. [90]
    EXO-200 collaboration, The search for neutrino-less double-beta decay: summary of current experiments, in Proceedings, 14th ICATPP conference on astroparticle, particle, space physics and detectors for physics applications (ICATPP 2013), Como, Italy, 23–27 September 2013, World Scientific, Singapore, (2014), pg. 304 [arXiv:1402.1170] [INSPIRE].
  91. [91]
    nEXO collaboration, The sensitivity of the nEXO experiment to Majorana neutrinos, J. Phys. Conf. Ser. 888 (2017) 012237 [INSPIRE].
  92. [92]
    KamLAND-Zen collaboration, Status of balloon production for KamLAND-Zen 800 kg phase, Nucl. Instrum. Meth. A 845 (2017) 410 [INSPIRE].
  93. [93]
    M. Agostini et al., Background-free search for neutrinoless double-β decay of 76 Ge with GERDA, arXiv:1703.00570 [INSPIRE].
  94. [94]
    D.G. Phillips, II et al., The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay, J. Phys. Conf. Ser. 381 (2012) 012044 [arXiv:1111.5578] [INSPIRE].CrossRefGoogle Scholar
  95. [95]
    J.F. Wilkerson et al., The Majorana demonstrator: a search for neutrinoless double-beta decay of germanium-76, J. Phys. Conf. Ser. 375 (2012) 042010 [INSPIRE].CrossRefGoogle Scholar
  96. [96]
    LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless Double beta decay (LEGEND), AIP Conf. Proc. 1894 (2017) 020027 [arXiv:1709.01980] [INSPIRE].
  97. [97]
    CUORE collaboration, The CUORE experiment: status and prospects, J. Phys. Conf. Ser. 375 (2012) 042013 [INSPIRE].
  98. [98]
    CUORE collaboration, Initial performance of the CUORE-0 experiment, Eur. Phys. J. C 74 (2014) 2956 [arXiv:1402.0922] [INSPIRE].
  99. [99]
    CUORE collaboration, Searching for neutrinoless double-beta decay of 130 Te with CUORE, Adv. High Energy Phys. 2015 (2015) 879871 [arXiv:1402.6072] [INSPIRE].
  100. [100]
    SNO+ collaboration, Neutrinoless double beta decay with SNO+, J. Phys. Conf. Ser. 375 (2012) 042015 [arXiv:1201.6169] [INSPIRE].
  101. [101]
    SNO+ collaboration, The SNO+ experiment for neutrinoless double-beta decay, Nucl. Part. Phys. Proc. 273-275 (2016) 1836 [INSPIRE].
  102. [102]
    A.S. Barabash, SeperNEMO double beta decay experiment, J. Phys. Conf. Ser. 375 (2012) 042012 [arXiv:1112.1784] [INSPIRE].CrossRefGoogle Scholar
  103. [103]
    S. Karki, P. Aryal, H.J. Kim, Y.D. Kim and H.K. Park, Determination of Mo- and Ca-isotope ratios in Ca 100 MoO 4 crystal for AMoRE-I experiment, Nucl. Instrum. Meth. A 877 (2018)328 [INSPIRE].
  104. [104]
    AMoRE collaboration, Status of the AMoRE experiment, J. Phys. Conf. Ser. 888 (2017) 012232 [INSPIRE].
  105. [105]
    NEXT collaboration, NEXT, a HPGXe TPC for neutrinoless double beta decay searches, arXiv:0907.4054 [INSPIRE].
  106. [106]
    NEXT collaboration, Present status and future perspectives of the NEXT experiment, Adv. High Energy Phys. 2014 (2014) 907067 [arXiv:1307.3914] [INSPIRE].
  107. [107]
    A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].
  108. [108]
    R. Alonso, M. Dhen, M.B. Gavela and T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models, JHEP 01 (2013) 118 [arXiv:1209.2679] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  110. [110]
    S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a neutrino factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [INSPIRE].ADSGoogle Scholar
  111. [111]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  112. [112]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017)087 [arXiv:1611.01514] [INSPIRE].
  113. [113]
    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
  114. [114]
    F.L. Bezrukov, νMSM-predictions for neutrinoless double beta decay, Phys. Rev. D 72 (2005) 071303 [hep-ph/0505247] [INSPIRE].
  115. [115]
    T. Asaka, S. Eijima and H. Ishida, Mixing of active and sterile neutrinos, JHEP 04 (2011) 011 [arXiv:1101.1382] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    T. Asaka, S. Eijima and H. Ishida, On neutrinoless double beta decay in the νMSM, Phys. Lett. B 762 (2016) 371 [arXiv:1606.06686] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable baryogenesis in seesaw models, JHEP 08 (2016) 157 [arXiv:1606.06719] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    A. Yu. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [INSPIRE].
  120. [120]
    M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].Google Scholar
  121. [121]
    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].
  122. [122]
    B. Dasgupta and J. Kopp, Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure, Phys. Rev. Lett. 112 (2014) 031803 [arXiv:1310.6337] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  2. 2.Institut für KernphysikKarlsruher Institut für TechnologieEggenstein-LeopoldshafenGermany

Personalised recommendations