Advertisement

Four-dimensional black hole entropy from F-theory

  • Thomas W. Grimm
  • Huibert het Lam
  • Kilian MayerEmail author
  • Stefan Vandoren
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We study the central charges and levels of a two-dimensional N = (0, 4) superconformal field theory describing four-dimensional BPS black holes in F-theory. These arise from D3-branes wrapping a curve in the base of an elliptically fibered Calabi-Yau threefold times a circle, and probe a transverse Taub-NUT space. The near horizon geometry of these D3-branes is AdS3 × S3/m, where m is the NUT charge. Starting from a six-dimensional supergravity effective action we compute three-dimensional Chern-Simons terms to deduce the central charges and levels. We find that it is crucial to integrate out an infinite tower of massive Kaluza-Klein states on S3/m to match the expected microscopic results. The induced corrections turn out to contribute at leading order to the central charges and levels, which in turn determine the black hole entropy.

Keywords

Black Holes in String Theory Conformal Field Theory F-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
  2. [2]
    C. Vafa, Black holes and Calabi-Yau threefolds, Adv. Theor. Math. Phys. 2 (1998) 207 [hep-th/9711067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].
  5. [5]
    T. Weigand, TASI Lectures on F-theory, arXiv:1806.01854 [INSPIRE].
  6. [6]
    W. Taylor, TASI Lectures on Supergravity and String Vacua in Various Dimensions, arXiv:1104.2051 [INSPIRE].
  7. [7]
    I. Bena, D.-E. Diaconescu and B. Florea, Black string entropy and Fourier-Mukai transform, JHEP 04 (2007) 045 [hep-th/0610068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-Theory, Spinning Black Holes and Multi-string Branches, JHEP 01 (2016) 009 [arXiv:1509.00455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].
  10. [10]
    C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS 3 /CFT 2, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
  11. [11]
    C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS 3 /CFT 2 (2, 0), JHEP 06 (2018) 008 [arXiv:1712.07631] [INSPIRE].
  12. [12]
    D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [INSPIRE].
  13. [13]
    K. Behrndt, G. Lopes Cardoso and S. Mahapatra, Exploring the relation between 4D and 5D BPS solutions, Nucl. Phys. B 732 (2006) 200 [hep-th/0506251] [INSPIRE].
  14. [14]
    S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].
  15. [15]
    F. Bonetti and T.W. Grimm, Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds, JHEP 05 (2012) 019 [arXiv:1112.1082] [INSPIRE].
  16. [16]
    P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP 12 (2006) 009 [hep-th/0606230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F. Bonetti, T.W. Grimm and S. Hohenegger, One-loop Chern-Simons terms in five dimensions, JHEP 07 (2013) 043 [arXiv:1302.2918] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Dabholkar, J. Gomes, S. Murthy and A. Sen, Supersymmetric Index from Black Hole Entropy, JHEP 04 (2011) 034 [arXiv:1009.3226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  22. [22]
    H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett. B 471 (2000) 358 [gr-qc/9909061] [INSPIRE].
  23. [23]
    L.J. Romans, Selfduality for Interacting Fields: Covariant Field Equations for Six-dimensional Chiral Supergravities, Nucl. Phys. B 276 (1986) 71 [INSPIRE].
  24. [24]
    S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nucl. Phys. B 519 (1998) 115 [hep-th/9711059] [INSPIRE].
  25. [25]
    H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [INSPIRE].
  26. [26]
    A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].
  27. [27]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  28. [28]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  29. [29]
    P. Kraus, Lectures on black holes and the AdS 3 /CF T 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].
  30. [30]
    V. Sadov, Generalized Green-Schwarz mechanism in F-theory, Phys. Lett. B 388 (1996) 45 [hep-th/9606008] [INSPIRE].
  31. [31]
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].
  32. [32]
    T.W. Grimm, K. Mayer and M. Weissenbacher, Higher derivatives in Type II and M-theory on Calabi-Yau threefolds, JHEP 02 (2018) 127 [arXiv:1702.08404] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    H. Het lam and S. Vandoren, BPS solutions of six-dimensional (1, 0) supergravity coupled to tensor multiplets, JHEP 06 (2018) 021 [arXiv:1804.04681] [INSPIRE].
  34. [34]
    T.W. Grimm and W. Taylor, Structure in 6D and 4D N = 1 supergravity theories from F-theory, JHEP 10 (2012) 105 [arXiv:1204.3092] [INSPIRE].
  35. [35]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
  36. [36]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, Precision Entropy of Spinning Black Holes, JHEP 09 (2007) 003 [arXiv:0705.1847] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, 5D Black Holes and Strings with Higher Derivatives, JHEP 06 (2007) 007 [hep-th/0703087] [INSPIRE].
  38. [38]
    P.A. Cano, S. Chimento, P. Meessen, T. Ortín, P.F. Ramírez and A. Ruipérez, Beyond the near-horizon limit: Stringy corrections to Heterotic Black Holes, arXiv:1808.03651 [INSPIRE].
  39. [39]
    N. Banerjee, I. Mandal and A. Sen, Black Hole Hair Removal, JHEP 07 (2009) 091 [arXiv:0901.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    D.P. Jatkar, A. Sen and Y.K. Srivastava, Black Hole Hair Removal: Non-linear Analysis, JHEP 02 (2010) 038 [arXiv:0907.0593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J.R. David and A. Sen, CHL Dyons and Statistical Entropy Function from D1-D5 System, JHEP 11 (2006) 072 [hep-th/0605210] [INSPIRE].
  42. [42]
    P.K. Townsend, K. Pilch and P. van Nieuwenhuizen, Selfduality in Odd Dimensions, Phys. Lett. B 136 (1984) 38 [INSPIRE].
  43. [43]
    F. Bonetti, T.W. Grimm and S. Hohenegger, A Kaluza-Klein inspired action for chiral p-forms and their anomalies, Phys. Lett. B 720 (2013) 424 [arXiv:1206.1600] [INSPIRE].
  44. [44]
    S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS 3 × S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].
  45. [45]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2d conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].
  46. [46]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian Geometry. I, Math. Proc. Cambridge Phil. Soc. 77 (1975) 43 [INSPIRE].
  47. [47]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian Geometry. II, Math. Proc. Cambridge Phil. Soc. 78 (1976) 405 [INSPIRE].
  48. [48]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian Geometry. III, Math. Proc. Cambridge Phil. Soc. 79 (1976) 71 [INSPIRE].
  49. [49]
    G. Ishiki, Y. Takayama and A. Tsuchiya, \( \mathcal{N}=4 \) SYM on R × S 3 and theories with 16 supercharges, JHEP 10 (2006) 007 [hep-th/0605163] [INSPIRE].
  50. [50]
    L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and Odd Dimensions, Annals Phys. 163 (1985) 288 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    L. Álvarez-Gaumé and P.H. Ginsparg, The Structure of Gauge and Gravitational Anomalies, Annals Phys. 161 (1985) 423 [Erratum ibid. 171 (1986) 233] [INSPIRE].
  52. [52]
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, Gauge Theories and Differential Geometry, Phys. Rept. 66 (1980) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless Towers of States, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    P. Corvilain, T.W. Grimm and D. Regalado, Chiral anomalies on a circle and their cancellation in F-theory, JHEP 04 (2018) 020 [arXiv:1710.07626] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  56. [56]
    G. Dvali, Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys. 58 (2010) 528 [arXiv:0706.2050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    L. Martucci, Topological duality twist and brane instantons in F-theory, JHEP 06 (2014) 180 [arXiv:1403.2530] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with varying coupling, JHEP 04 (2017) 111 [arXiv:1612.05640] [INSPIRE].
  59. [59]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Thomas W. Grimm
    • 1
  • Huibert het Lam
    • 1
  • Kilian Mayer
    • 1
    Email author
  • Stefan Vandoren
    • 1
  1. 1.Institute for Theoretical Physics and Center for Extreme Matter and Emergent PhenomenaUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations