Precision photon spectra for wino annihilation

Abstract

We provide precise predictions for the hard photon spectrum resulting from neutral SU(2)W triplet (wino) dark matter annihilation. Our calculation is performed utilizing an effective field theory expansion around the endpoint region where the photon energy is near the wino mass. This has direct relevance to line searches at indirect detection experiments. We compute the spectrum at next-to-leading logarithmic (NLL) accuracy within the framework established by a factorization formula derived previously by our collaboration. This allows simultaneous resummation of large Sudakov logarithms (arising from a restricted final state) and Sommerfeld effects. Resummation at NLL accuracy shows good convergence of the perturbative series due to the smallness of the electroweak coupling constant — scale variation yields uncertainties on our NLL prediction at the level of 5%. We highlight a number of interesting field theory effects that appear at NLL associated with the presence of electroweak symmetry breaking, which should have more general applicability. We also study the importance of using the full spectrum as compared with a single endpoint bin approximation when computing experimental limits. Our calculation provides a state of the art prediction for the hard photon spectrum that can be easily generalized to other DM candidates, allowing for the robust interpretation of data collected by current and future indirect detection experiments.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    H.E.S.S. collaboration, The status of the H.E.S.S. project, New Astron. Rev. 48 (2004) 331 [astro-ph/0403052] [INSPIRE].

  2. [2]

    H.E.S.S. collaboration, Search for photon-linelike signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].

  3. [3]

    H.E.S.S. collaboration, Search for γ-ray line signals from dark matter annihilations in the inner galactic halo from 10 years of observations with H.E.S.S., Phys. Rev. Lett. 120 (2018) 201101 [arXiv:1805.05741] [INSPIRE].

  4. [4]

    G. Sinnis, A. Smith and J.E. McEnery, HAWC: a next generation all-sky VHE gamma-ray telescope, in On recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories. Proceedings, 10th Marcel Grossmann Meeting, MG10, pt. A–C, Rio de Janeiro, Brazil, 20–26 July 2003, pg. 1068 [astro-ph/0403096] [INSPIRE].

  5. [5]

    HAWC collaboration, Dark matter annihilation and decay searches with the High Altitude Water Cherenkov (HAWC) observatory, PoS(ICRC2015)1227 (2016) [arXiv:1508.04352] [INSPIRE].

  6. [6]

    HAWC collaboration, Highlights from the High Altitude Water Cherenkov Observatory, PoS(ICRC2015)025 (2016) [arXiv:1509.07851] [INSPIRE].

  7. [7]

    T.C. Weekes et al., VERITAS: the Very Energetic Radiation Imaging Telescope Array System, Astropart. Phys. 17 (2002) 221 [astro-ph/0108478] [INSPIRE].

  8. [8]

    VERITAS collaboration, The first VERITAS telescope, Astropart. Phys. 25 (2006) 391 [astro-ph/0604119] [INSPIRE].

  9. [9]

    VERITAS collaboration, The VERITAS dark matter program, in Proceedings, 4th International Fermi Symposium Monterey, CA, U.S.A., 28 October–2 November 2012 [arXiv:1303.1406] [INSPIRE].

  10. [10]

    MAGIC collaboration, Planned dark matter searches with the MAGIC telescope, in Proceedings, 40th Rencontres de Moriond on Very High Energy Phenomena in the Universe, La Thuile, Italy, 12–19 March 2005, pg. 421 [astro-ph/0505313] [INSPIRE].

  11. [11]

    MAGIC and Fermi-LAT collaborations, Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].

  12. [12]

    H.E.S.S. collaboration, Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S., Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE].

  13. [13]

    CTA Consortium collaboration, Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy, Exper. Astron. 32 (2011) 193 [arXiv:1008.3703] [INSPIRE].

  14. [14]

    Cherenkov Telescope Array Consortium collaboration, Science with the Cherenkov Telescope Array, arXiv:1709.07997 [INSPIRE].

  15. [15]

    M. Baumgart et al., Resummed photon spectra for WIMP annihilation, JHEP 03 (2018) 117 [arXiv:1712.07656] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

  17. [17]

    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

  18. [18]

    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

  19. [19]

    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  20. [20]

    M. Baumgart, I.Z. Rothstein and V. Vaidya, Calculating the annihilation rate of weakly interacting massive particles, Phys. Rev. Lett. 114 (2015) 211301 [arXiv:1409.4415] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    M. Bauer, T. Cohen, R.J. Hill and M.P. Solon, Soft collinear effective theory for heavy WIMP annihilation, JHEP 01 (2015) 099 [arXiv:1409.7392] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    G. Ovanesyan, T.R. Slatyer and I.W. Stewart, Heavy dark matter annihilation from effective field theory, Phys. Rev. Lett. 114 (2015) 211302 [arXiv:1409.8294] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M. Baumgart, I.Z. Rothstein and V. Vaidya, Constraints on galactic wino densities from gamma ray lines, JHEP 04 (2015) 106 [arXiv:1412.8698] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Baumgart and V. Vaidya, Semi-inclusive wino and higgsino annihilation to LL′, JHEP 03 (2016) 213 [arXiv:1510.02470] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    G. Ovanesyan, N.L. Rodd, T.R. Slatyer and I.W. Stewart, One-loop correction to heavy dark matter annihilation, Phys. Rev. D 95 (2017) 055001 [arXiv:1612.04814] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    A. Hryczuk and R. Iengo, The one-loop and Sommerfeld electroweak corrections to the wino dark matter annihilation, JHEP 01 (2012) 163 [Erratum ibid. 06 (2012) 137] [arXiv:1111.2916] [INSPIRE].

  27. [27]

    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].

  28. [28]

    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

  29. [29]

    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    K. Blum, R. Sato and T.R. Slatyer, Self-consistent calculation of the Sommerfeld enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    M. Beneke et al., Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119 [arXiv:1601.04718] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M. de Naurois and L. Rolland, A high performance likelihood reconstruction of gamma-rays for imaging atmospheric Cherenkov telescopes, Astropart. Phys. 32 (2009) 231 [arXiv:0907.2610] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

  35. [35]

    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. [36]

    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

  38. [38]

    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].

  39. [39]

    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

  40. [40]

    A. Pierce, Dark matter in the finely tuned minimal supersymmetric Standard Model, Phys. Rev. D 70 (2004) 075006 [hep-ph/0406144] [INSPIRE].

  41. [41]

    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  43. [43]

    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    L. Rinchiuso et al., Hunting for heavy winos in the galactic center, Phys. Rev. D 98 (2018) 123014 [arXiv:1808.04388] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    W.E. Caswell and G.P. Lepage, Effective Lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

  47. [47]

    M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].

  48. [48]

    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The effective field theory of dark matter direct detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett. 100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    J.-Y. Chiu, R. Kelley and A.V. Manohar, Electroweak corrections using effective field theory: applications to the LHC, Phys. Rev. D 78 (2008) 073006 [arXiv:0806.1240] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    A.J. Larkoski, I. Moult and D. Neill, Toward multi-differential cross sections: measuring two angularities on a single jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of double-differential cross sections and fully-unintegrated parton distribution functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A.J. Larkoski, I. Moult and D. Neill, Non-global logarithms, factorization and the soft substructure of jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    P. Pietrulewicz, F.J. Tackmann and W.J. Waalewijn, Factorization and resummation for generic hierarchies between jets, JHEP 08 (2016) 002 [arXiv:1601.05088] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].

  61. [61]

    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

  64. [64]

    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

  65. [65]

    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective field theory for jet processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and resummation for jet processes, JHEP 11 (2016) 019 [Erratum ibid. 05 (2017) 154] [arXiv:1605.02737] [INSPIRE].

  67. [67]

    A.J. Larkoski, I. Moult and D. Neill, The analytic structure of non-global logarithms: convergence of the dressed gluon expansion, JHEP 11 (2016) 089 [arXiv:1609.04011] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  69. [69]

    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  70. [70]

    T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. [71]

    P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].

  72. [72]

    P. Ciafaloni and D. Comelli, Electroweak Sudakov form-factors and nonfactorizable soft QED effects at NLC energies, Phys. Lett. B 476 (2000) 49 [hep-ph/9910278] [INSPIRE].

  73. [73]

    M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].

  74. [74]

    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    T. Becher and G. Bell, Analytic regularization in soft-collinear effective theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. [78]

    M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].

  79. [79]

    A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1 [INSPIRE].

    Google Scholar 

  80. [80]

    L.G. Almeida, S.D. Ellis, C. Lee, G. Sterman, I. Sung and J.R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    M. Neubert, Advanced predictions for moments of the \( \overline{B}\to {X}_s\gamma \) photon spectrum, Phys. Rev. D 72 (2005) 074025 [hep-ph/0506245] [INSPIRE].

  83. [83]

    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

  84. [84]

    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top jets in the peak region: factorization analysis with NLL resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    M. Beneke, A. Broggio, C. Hasner and M. Vollmann, Energetic γ-rays from TeV scale dark matter annihilation resummed, Phys. Lett. B 786 (2018) 347 [arXiv:1805.07367] [INSPIRE].

    ADS  Article  Google Scholar 

  87. [87]

    A. Manohar, B. Shotwell, C. Bauer and S. Turczyk, Non-cancellation of electroweak logarithms in high-energy scattering, Phys. Lett. B 740 (2015) 179 [arXiv:1409.1918] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    A.V. Manohar and W.J. Waalewijn, Electroweak logarithms in inclusive cross sections, JHEP 08 (2018) 137 [arXiv:1802.08687] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    I.Z. Rothstein and I.W. Stewart, An effective field theory for forward scattering and factorization violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  90. [90]

    H.E.S.S. collaboration, Search for dark matter annihilations towards the inner galactic halo from 10 years of observations with H.E.S.S., Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].

  91. [91]

    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

  92. [92]

    M. Cirelli, R. Franceschini and A. Strumia, Minimal dark matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of minimal dark matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].

    ADS  Article  Google Scholar 

  95. [95]

    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological implications of dark matter bound states, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  96. [96]

    J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].

    ADS  Article  Google Scholar 

  97. [97]

    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  98. [98]

    L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett. 95 (2005) 241301 [hep-ph/0507229] [INSPIRE].

  99. [99]

    T. Bringmann, L. Bergstrom and J. Edsjo, New gamma-ray contributions to supersymmetric dark matter annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    M. Cannoni, M.E. Gomez, M.A. Sanchez-Conde, F. Prada and O. Panella, Impact of internal bremsstrahlung on the detection of gamma-rays from neutralinos, Phys. Rev. D 81 (2010) 107303 [arXiv:1003.5164] [INSPIRE].

    ADS  Google Scholar 

  101. [101]

    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak corrections are relevant for dark matter indirect detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].

    ADS  Article  Google Scholar 

  102. [102]

    T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].

    ADS  Article  Google Scholar 

  103. [103]

    C. Garcia-Cely and A. Ibarra, Novel gamma-ray spectral features in the inert doublet model, JCAP 09 (2013) 025 [arXiv:1306.4681] [INSPIRE].

    ADS  Article  Google Scholar 

  104. [104]

    M. Garny, A. Ibarra, M. Pato and S. Vogl, Internal bremsstrahlung signatures in light of direct dark matter searches, JCAP 12 (2013) 046 [arXiv:1306.6342] [INSPIRE].

    ADS  Article  Google Scholar 

  105. [105]

    F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Scalar dark matter models with significant internal bremsstrahlung, JCAP 10 (2013) 025 [arXiv:1307.6480] [INSPIRE].

    ADS  Article  Google Scholar 

  106. [106]

    A. Ibarra, T. Toma, M. Totzauer and S. Wild, Sharp gamma-ray spectral features from scalar dark matter annihilations, Phys. Rev. D 90 (2014) 043526 [arXiv:1405.6917] [INSPIRE].

    ADS  Google Scholar 

  107. [107]

    C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer and M.H.G. Tytgat, Gamma-rays from heavy minimal dark matter, JCAP 10 (2015) 058 [arXiv:1507.05536] [INSPIRE].

    ADS  Article  Google Scholar 

  108. [108]

    C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the inert doublet dark matter model with Cherenkov telescopes, JCAP 02 (2016) 043 [arXiv:1512.02801] [INSPIRE].

    ADS  Article  Google Scholar 

  109. [109]

    G. Bambhaniya, J. Kumar, D. Marfatia, A.C. Nayak and G. Tomar, Vector dark matter annihilation with internal bremsstrahlung, Phys. Lett. B 766 (2017) 177 [arXiv:1609.05369] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas L. Rodd.

Additional information

ArXiv ePrint: 1808.08956

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baumgart, M., Cohen, T., Moulin, E. et al. Precision photon spectra for wino annihilation. J. High Energ. Phys. 2019, 36 (2019). https://doi.org/10.1007/JHEP01(2019)036

Download citation

Keywords

  • Jets
  • Phenomenological Models