Advertisement

Curved spacetime effective field theory (cEFT) — construction with the heat kernel method

  • Łukasz Nakonieczny
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

In the presented paper we tackle the problem of the effective field theory in curved spacetime (cEFT) construction. To this end, we propose to use the heat kernel method. After introducing the general formalism based on the well established formulas known from the application of the heat kernel method to deriving the one-loop effective action in curved spacetime, we tested it on selected problems. The discussed examples were chosen to serve as a check of validity of the derived formulas by comparing the obtained results to the known flat spacetime calculations. On the other hand, they allowed us to obtain new results concerning the influence of the gravity induced operators on the effective field theory without unnecessary calculational complications.

Keywords

Effective Field Theories Beyond Standard Model Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, The decay hγγ in the Standard-Model Effective Field Theory, JHEP 08 (2018) 103 [arXiv:1805.00302] [INSPIRE].
  4. [4]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    B. Henning, X. Lu and H. Murayama, One-loop Matching and Running with Covariant Derivative Expansion, JHEP 01 (2018) 123 [arXiv:1604.01019] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Drozd, J. Ellis, J. Quevillon and T. You, The Universal One-Loop Effective Action, JHEP 03 (2016) 180 [arXiv:1512.03003] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the Universal One-Loop Effective Action: Heavy-Light Coefficients, JHEP 08 (2017) 054 [arXiv:1706.07765] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett. 113 (2014) 211102 [arXiv:1407.3141] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and Higgs stability after inflation, Phys. Rev. Lett. 115 (2015) 241301 [arXiv:1506.04065] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Czerwinska, Z. Lalak and L. Nakonieczny, Stability of the effective potential of the gauge-less top-Higgs model in curved spacetime, JHEP 11 (2015) 207 [arXiv:1508.03297] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D.G. Figueroa, A. Rajantie and F. Torrenti, Higgs field-curvature coupling and postinflationary vacuum instability, Phys. Rev. D 98 (2018) 023532 [arXiv:1709.00398] [INSPIRE].
  12. [12]
    T. Markkanen and S. Nurmi, Dark matter from gravitational particle production at reheating, JCAP 02 (2017) 008 [arXiv:1512.07288] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Tang and Y.-L. Wu, On Thermal Gravitational Contribution to Particle Production and Dark Matter, Phys. Lett. B 774 (2017) 676 [arXiv:1708.05138] [INSPIRE].
  14. [14]
    M. Artymowski, O. Czerwinska, Z. Lalak and M. Lewicki, Gravitational wave signals and cosmological consequences of gravitational reheating, JCAP 04 (2018) 046 [arXiv:1711.08473] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.S. Majumdar, P. Das Gupta and R.P. Saxena, Baryogenesis from black hole evaporation, Int. J. Mod. Phys. D 4 (1995) 517 [INSPIRE].
  16. [16]
    N. Upadhyay, P. Das Gupta and R.P. Saxena, Baryogenesis from primordial black holes after electroweak phase transition, Phys. Rev. D 60 (1999) 063513 [astro-ph/9903253] [INSPIRE].
  17. [17]
    H. Davoudiasl, R. Kitano, G.D. Kribs, H. Murayama and P.J. Steinhardt, Gravitational baryogenesis, Phys. Rev. Lett. 93 (2004) 201301 [hep-ph/0403019] [INSPIRE].
  18. [18]
    G. Lambiase, Standard model extension with gravity and gravitational baryogenesis, Phys. Lett. B 642 (2006) 9 [hep-ph/0612212] [INSPIRE].
  19. [19]
    T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter and density perturbation from primordial black holes, Phys. Rev. D 89 (2014) 103501 [arXiv:1401.1909] [INSPIRE].
  20. [20]
    G. Aliferis, G. Kofinas and V. Zarikas, Efficient electroweak baryogenesis by black holes, Phys. Rev. D 91 (2015) 045002 [arXiv:1406.6215] [INSPIRE].
  21. [21]
    Y. Hamada and S. Iso, Baryon asymmetry from primordial black holes, PTEP 2017 (2017) 033B02 [arXiv:1610.02586] [INSPIRE].
  22. [22]
    B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach Science Publishers (1965) [INSPIRE].
  23. [23]
    I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro, Effective Action in Quantum Gravity, IOP Publishing (1992) [INSPIRE].
  24. [24]
    I.G. Avramidi, Heat kernel and quantum gravity, Lect. Notes Phys. Monogr. 64 (2000) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    L. Parker and D. Toms, Quantum Field Theory in Curved Spacetime, Cambridge University Press (2009) [INSPIRE].
  26. [26]
    V.P. Frolov and A.I. Zelnikov, Vacuum polarization by a massive scalar field in schwarzschild space-time, Phys. Lett. B 115 (1982) 372 [INSPIRE].
  27. [27]
    W.G. Anderson, P.R. Brady and R. Camporesi, Vacuum polarization and the black hole singularity, Class. Quant. Grav. 10 (1993) 497 [gr-qc/9211016] [INSPIRE].
  28. [28]
    J. Matyjasek, D. Tryniecki and K. Zwierzchowska, Vacuum polarization of the quantized massive scalar field in Reissner-Nordström spacetime, Phys. Rev. D 81 (2010) 124047 [arXiv:1005.1427] [INSPIRE].
  29. [29]
    A. Flachi, G.M. Quinta and J.P.S. Lemos, Black Hole Quantum Vacuum Polarization in Higher Dimensions, Phys. Rev. D 94 (2016) 105001 [arXiv:1609.06794] [INSPIRE].
  30. [30]
    E. Elizalde and S.D. Odintsov, Renormalization group improved effective Lagrangian for interacting theories in curved space-time, Phys. Lett. B 321 (1994) 199 [hep-th/9311087] [INSPIRE].
  31. [31]
    E. Elizalde and S. Odintsov, Renormalization-group improved effective potential for interacting theories with several mass scales in curved spacetime, Z. Phys. C 64 (1994) 699.Google Scholar
  32. [32]
    E. Elizalde, K. Kirsten and S.D. Odintsov, Effective Lagrangian and the back reaction problem in a selfinteracting O(N ) scalar theory in curved space-time, Phys. Rev. D 50 (1994) 5137 [hep-th/9404084] [INSPIRE].
  33. [33]
    E. Elizalde, S.D. Odintsov and A. Romeo, Improved effective potential in curved space-time and quantum matter, higher derivative gravity theory, Phys. Rev. D 51 (1995) 1680 [hep-th/9410113] [INSPIRE].
  34. [34]
    E. Elizalde, S.D. Odintsov, E.O. Pozdeeva and S.Yu. Vernov, Renormalization-group improved inflationary scalar electrodynamics and SU(5) scenarios confronted with Planck 2013 and BICEP2 results, Phys. Rev. D 90 (2014) 084001 [arXiv:1408.1285] [INSPIRE].
  35. [35]
    R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher-derivative quantum gravity, Phys. Rev. D 91 (2015) 083529 [arXiv:1412.1073] [INSPIRE].
  36. [36]
    T. Markkanen and A. Tranberg, Quantum Corrections to Inflaton and Curvaton Dynamics, JCAP 11 (2012) 027 [arXiv:1207.2179] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Z. Lalak and Ł. Nakonieczny, Darkflation — one scalar to rule them all?, Phys. Dark Univ. 15 (2017) 125 [arXiv:1609.06887].CrossRefGoogle Scholar
  38. [38]
    T. Markkanen, S. Nurmi, A. Rajantie and S. Stopyra, The 1-loop effective potential for the Standard Model in curved spacetime, JHEP 06 (2018) 040 [arXiv:1804.02020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    D.J. Toms, Effective action for the Yukawa model in curved spacetime, JHEP 05 (2018) 139 [arXiv:1804.08350] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    D.J. Toms, Gauged Yukawa model in curved spacetime, Phys. Rev. D 98 (2018) 025015 [arXiv:1805.01700] [INSPIRE].
  41. [41]
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman (1973).Google Scholar
  42. [42]
    A.O. Barvinsky and G.A. Vilkovisky, Beyond the Schwinger-Dewitt Technique: Converting Loops Into Trees and In-In Currents, Nucl. Phys. B 282 (1987) 163 [INSPIRE].
  43. [43]
    A.O. Barvinsky and G.A. Vilkovisky, Covariant perturbation theory. 2: Second order in the curvature. General algorithms, Nucl. Phys. B 333 (1990) 471 [INSPIRE].
  44. [44]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    J.B. Hartle and B.L. Hu, Quantum Effects in the Early Universe. 2. Effective Action for Scalar Fields in Homogeneous Cosmologies with Small Anisotropy, Phys. Rev. D 20 (1979) 1772 [INSPIRE].
  46. [46]
    J.B. Hartle and B.L. Hu, Quantum effects in the early universe. III. Dissipation of anisotropy by scalar particle production, Phys. Rev. D 21 (1980) 2756 [INSPIRE].
  47. [47]
    A. Dobado and A.L. Maroto, Particle production from nonlocal gravitational effective action, Phys. Rev. D 60 (1999) 104045 [gr-qc/9803076] [INSPIRE].
  48. [48]
    A. Codello, R. Percacci, L. Rachwal and A. Tonero, Computing the Effective Action with the Functional Renormalization Group, Eur. Phys. J. C 76 (2016) 226 [arXiv:1505.03119] [INSPIRE].
  49. [49]
    L. Amendola, Cosmology with nonminimal derivative couplings, Phys. Lett. B 301 (1993) 175 [gr-qc/9302010] [INSPIRE].
  50. [50]
    C. Germani and A. Kehagias, New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity, Phys. Rev. Lett. 105 (2010) 011302 [arXiv:1003.2635] [INSPIRE].
  51. [51]
    N. Kourosh and R. Narges, Testing an inflation model with nonminimal derivative coupling in the light of planck 2015 data, Adv. High Energy Phys. 2016 (2016) 1252689.Google Scholar
  52. [52]
    J. Georg and S. Watson, A Preferred Mass Range for Primordial Black Hole Formation and Black Holes as Dark Matter Revisited, JHEP 09 (2017) 138 [arXiv:1703.04825] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Atkins and X. Calmet, Bounds on the Nonminimal Coupling of the Higgs Boson to Gravity, Phys. Rev. Lett. 110 (2013) 051301 [arXiv:1211.0281] [INSPIRE].
  54. [54]
    I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [INSPIRE].
  55. [55]
    F. Bastianelli, J.M. Dàvila and C. Schubert, Gravitational corrections to the Euler-Heisenberg Lagrangian, JHEP 03 (2009) 086 [arXiv:0812.4849] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Banyeres, G. Domènech and J. Garriga, Vacuum birefringence and the Schwinger effect in (3+1) de Sitter, JCAP 10 (2018) 023 [arXiv:1809.08977] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Faculty of PhysicsUniversity of WarsawWarszawaPoland

Personalised recommendations