Advertisement

CP violation in η muonic decays

  • Pablo Sanchez-PuertasEmail author
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

In this study, we investigate the imprints of CP violation in certain η muonic decays that could arise within the Standard Model effective field theory. In particular, we study the sensitivities that could be reached at REDTOP, a proposed η facility. After estimating the bounds that the neutron EDM places, we find still viable to discover signals of CP violation measuring the polarization of muons in ημ+μ decays, with a single effective operator as its plausible source.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B.F. Enriquez, C. Gatto and M.I.P. Morales, The REDTOP project: rare eta decays with a TPC for optical photons, PoS(ICHEP2016)812, (2016) [INSPIRE]
  2. [2]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
  3. [3]
    C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh and M. Reece, Interpreting the electron EDM constraint, arXiv:1810.07736 [INSPIRE].
  4. [4]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  6. [6]
    G.M. Pruna, Leptonic CP-violation in the charged sector and effective field theory approach, PoS(FPCP2017)016 (2017) [arXiv:1710.08311] [INSPIRE].
  7. [7]
    G. Panico, A. Pomarol and M. Riembau, EFT approach to the electron electric dipole moment at the two-loop level, arXiv:1810.09413 [INSPIRE].
  8. [8]
    N.P. Samios, R. Plano, A. Prodell, M. Schwartz and J. Steinberger, Parity of the neutral pion and the decay π 0 → 2e + + 2e , Phys. Rev. 126 (1962) 1844 [INSPIRE].
  9. [9]
    Z.E.S. Uy, Determining the CP-violating and CP conserving form-factors in K Sγγ and K Lγγ, Phys. Rev. D 43 (1991) 802 [INSPIRE].
  10. [10]
    KTeV collaboration, Determination of the parity of the neutral pion via the four-electron decay, Phys. Rev. Lett. 100 (2008) 182001 [arXiv:0802.2064] [INSPIRE].
  11. [11]
    T. Feldmann, Quark structure of pseudoscalar mesons, Int. J. Mod. Phys. A 15 (2000) 159 [hep-ph/9907491] [INSPIRE].
  12. [12]
    R. Escribano, S. Gonzàlez-Solís, P. Masjuan and P. Sanchez-Puertas, ηtransition form factor from space- and timelike experimental data, Phys. Rev. D 94 (2016) 054033 [arXiv:1512.07520] [INSPIRE].
  13. [13]
    B.R. Martin, E. De Rafael and J. Smith, Neutral kaon decays into lepton pairs, Phys. Rev. D 2 (1970) 179 [INSPIRE].
  14. [14]
    G. Ecker and A. Pich, The longitudinal muon polarization in K Lμ + μ , Nucl. Phys. B 366 (1991) 189 [INSPIRE].
  15. [15]
    P. Masjuan and P. Sanchez-Puertas, η and η decays into lepton pairs, JHEP 08 (2016) 108 [arXiv:1512.09292] [INSPIRE].
  16. [16]
    P. Sanchez-Puertas, A theoretical study of meson transition form factors, Ph.D. thesis, Inst. Phys., Mainz U., Mainz, Germany, (2016) [arXiv:1709.04792] [INSPIRE].
  17. [17]
    GEANT4 collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
  18. [18]
    R. Escribano and S. Gonzàlez-Solís, A data-driven approach to π 0 , η and ηsingle and double Dalitz decays, Chin. Phys. C 42 (2018) 023109 [arXiv:1511.04916] [INSPIRE].
  19. [19]
    T. Husek, K. Kampf, S. Leupold and J. Novotny, Radiative corrections to the η (′) Dalitz decays, Phys. Rev. D 97 (2018) 096013 [arXiv:1711.11001] [INSPIRE].
  20. [20]
    K. Kampf, J. Novotný and P. Sanchez-Puertas, Radiative corrections to double-Dalitz decays revisited, Phys. Rev. D 97 (2018) 056010 [arXiv:1801.06067] [INSPIRE].
  21. [21]
    A. Czarnecki and W.J. Marciano, Electromagnetic dipole moments and new physics, Adv. Ser. Direct. High Energy Phys. 20 (2009) 11 [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    K. Yanase, N. Yoshinaga, K. Higashiyama and N. Yamanaka, Electric dipole moment of 199 Hg atom from P, CP-odd electron-nucleon interaction, arXiv:1805.00419 [INSPIRE].
  23. [23]
    R. Barbieri, J.A. Mignaco and E. Remiddi, Electron form-factors up to fourth order. 1, Nuovo Cim. A 11 (1972) 824 [INSPIRE].
  24. [24]
    T. Gutsche et al., CP-violating decays of the pseudoscalars η and η and their connection to the electric dipole moment of the neutron, Phys. Rev. D 95 (2017) 036022 [arXiv:1612.02276] [INSPIRE].
  25. [25]
    M. Knecht and A. Nyffeler, Hadronic light by light corrections to the muon g-2: the pion pole contribution, Phys. Rev. D 65 (2002) 073034 [hep-ph/0111058] [INSPIRE].
  26. [26]
    J.J. Kelly, Simple parametrization of nucleon form factors, Phys. Rev. C 70 (2004) 068202 [INSPIRE].
  27. [27]
    E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: anomalous dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin and B. Yoon, Neutron electric dipole moment and tensor charges from lattice QCD, Phys. Rev. Lett. 115 (2015) 212002 [arXiv:1506.04196] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (g μ − 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].
  30. [30]
    R. Escribano, P. Masjuan and P. Sanchez-Puertas, The η transition form factor from space-and time-like experimental data, Eur. Phys. J. C 75 (2015) 414 [arXiv:1504.07742] [INSPIRE].
  31. [31]
    P. Kroll, A study of the γ -f 0(980) transition form factors, Eur. Phys. J. C 77 (2017) 95 [arXiv:1610.01020] [INSPIRE].
  32. [32]
    D. Gomez Dumm, A. Pich and J. Portoles, The hadronic off-shell width of meson resonances, Phys. Rev. D 62 (2000) 054014 [hep-ph/0003320] [INSPIRE].
  33. [33]
    D. Gómez Dumm and P. Roig, Dispersive representation of the pion vector form factor in τππν τ decays, Eur. Phys. J. C 73 (2013) 2528 [arXiv:1301.6973] [INSPIRE].
  34. [34]
    C. Hanhart, A. Kupsc, U.G. Meissner, F. Stollenwerk and A. Wirzba, Dispersive analysis for ηγγ , Eur. Phys. J. C 73 (2013) 2668 [Erratum ibid. C 75 (2015) 242] [arXiv:1307.5654] [INSPIRE].
  35. [35]
    J. Bernabeu, D. Gomez Dumm and J. Vidal, ηγZ anomaly from the ηγμ + μ decay, Phys. Lett. B 429 (1998) 151 [hep-ph/9804390] [INSPIRE].
  36. [36]
    S.J. Brodsky and G.P. Lepage, Large angle two photon exclusive channels in quantum chromodynamics, Phys. Rev. D 24 (1981) 1808 [INSPIRE].
  37. [37]
    L.G. Landsberg, Electromagnetic decays of light mesons, Phys. Rept. 128 (1985) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L. Varnhorst, Nucleon sigma terms from lattice QCD, PoS(LATTICE2015)127, (2016) [INSPIRE].
  39. [39]
    A. Crivellin, M. Hoferichter and M. Procura, Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: disentangling two- and three-flavor effects, Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].
  40. [40]
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meissner, High-precision determination of the pion-nucleon σ term from Roy-Steiner equations, Phys. Rev. Lett. 115 (2015) 092301 [arXiv:1506.04142] [INSPIRE].
  41. [41]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].
  42. [42]
    I.P. Fernando, J.M. Alarcon and J.L. Goity, Baryon masses and σ terms in SU(3) BChPT×1/N c, Phys. Lett. B 781 (2018) 719 [arXiv:1804.03094] [INSPIRE].
  43. [43]
    E. Ruiz Arriola, W. Broniowski and P. Masjuan, Hadron resonances, large N c and the half-width rule, Acta Phys. Polon. Proc. Suppl. B 6 (2013) 95 [arXiv:1210.7153] [INSPIRE].
  44. [44]
    G.S. Bali, S. Collins, M. Gruber, A. Schäfer, P. Wein and T. Wurm, Solving the PCAC puzzle for nucleon axial and pseudoscalar form factors, arXiv:1810.05569 [INSPIRE].
  45. [45]
    C. Alabiso and G. Schierholz, Asymptotic behavior of form-factors for two-body and three-body bound states. 2. Spin 1/2 constituents, Phys. Rev. D 11 (1975) 1905 [INSPIRE].
  46. [46]
    J.M. Alarcón and C. Weiss, Nucleon form factors in dispersively improved chiral effective field theory: scalar form factor, Phys. Rev. C 96 (2017) 055206 [arXiv:1707.07682] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and TechnologyUniversitat Autónoma de BarcelonaBellaterra (Barcelona)Spain
  2. 2.Faculty of Mathematics and Physics, Institute of Particle and Nuclear PhysicsCharles University in PraguePraha 8Czech Republic

Personalised recommendations