Dark energy as a remnant of inflation and electroweak symmetry breaking

  • Konstantinos Dimopoulos
  • Tommi MarkkanenEmail author
Open Access
Regular Article - Theoretical Physics


It is shown that dark energy can be obtained from the interplay of the Higgs boson and the inflaton. A key element is the realization that electroweak symmetry breaking can trigger a second phase of rolling of the inflaton, which, when provided with the appropriate couplings between the fields, can be sufficiently slow to source accelerated expansion in the late time Universe. The observed dark energy density is obtained without fine-tuning of parameters or initial conditions due to an intricate conspiracy of numbers related to inflation, gravity and electroweak physics.


Classical Theories of Gravity Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
  2. [2]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
  3. [3]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIV. Dark energy and modified gravity, Astron. Astrophys. 594 (2016) A14 [arXiv:1502.01590] [INSPIRE].
  4. [4]
    J. Martin, Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Solà, Cosmological constant and vacuum energy: old and new ideas, J. Phys. Conf. Ser. 453 (2013) 012015 [arXiv:1306.1527] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P.J.E. Peebles and B. Ratra, Cosmology with a Time Variable Cosmological Constant, Astrophys. J. 325 (1988) L17 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B. Ratra and P.J.E. Peebles, Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D 37 (1988) 3406 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.R. Caldwell, R. Dave and P.J. Steinhardt, Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett. 80 (1998) 1582 [astro-ph/9708069] [INSPIRE].
  10. [10]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  11. [11]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P.J.E. Peebles and A. Vilenkin, Quintessential inflation, Phys. Rev. D 59 (1999) 063505 [astro-ph/9810509] [INSPIRE].
  13. [13]
    K. Dimopoulos and C. Owen, Quintessential Inflation with α-attractors, JCAP 06 (2017) 027 [arXiv:1703.00305] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    K. Hinterbichler and J. Khoury, Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration, Phys. Rev. Lett. 104 (2010) 231301 [arXiv:1001.4525] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Burrage, E.J. Copeland, P. Millington and M. Spannowsky, Fifth forces, Higgs portals and broken scale invariance, JCAP 11 (2018) 036 [arXiv:1804.07180] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Kehagias, A. Moradinezhad Dizgah and A. Riotto, Remarks on the Starobinsky model of inflation and its descendants, Phys. Rev. D 89 (2014) 043527 [arXiv:1312.1155] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
  19. [19]
    LHC Higgs Cross Section Working Group, D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  20. [20]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  21. [21]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  22. [22]
    A. Hebecker and C. Wetterich, Quintessential adjustment of the cosmological constant, Phys. Rev. Lett. 85 (2000) 3339 [hep-ph/0003287] [INSPIRE].
  23. [23]
    A. Hebecker and C. Wetterich, Natural quintessence?, Phys. Lett. B 497 (2001) 281 [hep-ph/0008205] [INSPIRE].
  24. [24]
    C. Wetterich, Conformal fixed point, cosmological constant and quintessence, Phys. Rev. Lett. 90 (2003) 231302 [hep-th/0210156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R. Kallosh, A. Linde and D. Roest, Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett. 112 (2014) 011303 [arXiv:1310.3950] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Kallosh, A. Linde and D. Roest, Superconformal Inflationary α-Attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R.R. Caldwell and E.V. Linder, The Limits of quintessence, Phys. Rev. Lett. 95 (2005) 141301 [astro-ph/0505494] [INSPIRE].
  28. [28]
    K. Dimopoulos, L. Donaldson Wood and C. Owen, Instant preheating in quintessential inflation with α-attractors, Phys. Rev. D 97 (2018) 063525 [arXiv:1712.01760] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.M. Carroll, Quintessence and the rest of the world, Phys. Rev. Lett. 81 (1998) 3067 [astro-ph/9806099] [INSPIRE].
  30. [30]
    R. Kallosh and A. Linde, Cosmological Attractors and Asymptotic Freedom of the Inflaton Field, JCAP 06 (2016) 047 [arXiv:1604.00444] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Consortium for Fundamental Physics, Physics DepartmentLancaster UniversityLancasterUnited Kingdom
  2. 2.Department of PhysicsImperial College LondonLondonU.K.

Personalised recommendations