Advertisement

On quantum quenches at one loop

  • Mikhail GoykhmanEmail author
  • Tom Shachar
  • Michael Smolkin
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We study global quenches in a number of interacting quantum field theory models away from the conformal regime. We conduct a perturbative renormalization at one-loop level and track the modifications of the quench protocol induced by the renormalization group flow. The scaling of various observables at early times is evaluated in the regime of rapid quench rates, with a particular emphasis placed on the leading order effects that cannot be recovered using the finite order conformal perturbation theory. We employ the canonical ideas of effective action to verify our results and discuss a potential route towards understanding the late time dynamics.

Keywords

Conformal Field Theory Renormalization Group Effective Field Theories Nonperturbative Effects 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Hemminger et al., Directing Matter and Energy: Five Challenges for Science and the Imagination. A Report from the Basic Energy Sciences Advisory Committee, U.S. Department of Energy (2007) and online at https://science.energy.gov/bes/community-resources/reports/abstracts/#GC.
  2. [2]
    R.V. Jensen and R. Shankar, Statistical Behavior in Deterministic Quantum Systems With Few Degrees of Freedom, Phys. Rev. Lett. 54 (1985) 1879 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2048 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051] [INSPIRE].
  5. [5]
    J.M. Deutsch, Eigenstate Thermalization Hypothesis, Rept. Prog. Phys. 81 (2018) 8 [arXiv:1805.01616].MathSciNetCrossRefGoogle Scholar
  6. [6]
    L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65 (2016) 239 [arXiv:1509.06411] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Gogolin and J. Eisert, Equilibration, thermalisation and the emergence of statistical mechanics in closed quantum systems, Rept. Prog. Phys. 79 (2016) 056001 [arXiv:1503.07538] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Lashkari, A. Dymarsky and H. Liu, Eigenstate Thermalization Hypothesis in Conformal Field Theory, J. Stat. Mech. 1803 (2018) 033101 [arXiv:1610.00302] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452 (2008) 854 [arXiv:0708.1324].ADSCrossRefGoogle Scholar
  10. [10]
    M. Greiner, O. Mandel, T.W. Hänsch and I. Bloch, Collapse and revival of the matter wave field of a Bose-Einstein condensate, Nature 419 (2002) 51 [cond-mat/0207196].
  11. [11]
    I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80 (2008) 885 [arXiv:0704.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac and M. Rigol, One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases, Rev. Mod. Phys. 83 (2011) 1405 [arXiv:1101.5337].ADSCrossRefGoogle Scholar
  14. [14]
    A. Mitra, Quantum quench dynamics, Annu. Rev. Condens. Matter Phys. 9 (2018) 245 [arXiv:1703.09740].ADSCrossRefGoogle Scholar
  15. [15]
    T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].ADSzbMATHGoogle Scholar
  16. [16]
    W.H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Fagotti and F. Essler, Reduced Density Matrix after a Quantum Quench, Phys. Rev. B 87 (2013) 245107 [arXiv:1302.6944].ADSCrossRefGoogle Scholar
  18. [18]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    P. Basu and S.R. Das, Quantum Quench across a Holographic Critical Point, JHEP 01 (2012) 103 [arXiv:1109.3909] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in \( \mathcal{N} \) = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, JHEP 05 (2013) 067 [arXiv:1302.2924] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of Abrupt Holographic Quenches, Phys. Rev. Lett. 111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in conformal field theories, Phys. Rev. Lett. 112 (2014) 171601 [arXiv:1401.0560] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.R. Das, D.A. Galante and R.C. Myers, Universality in fast quantum quenches, JHEP 02 (2015) 167 [arXiv:1411.7710] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    S.R. Das, D.A. Galante and R.C. Myers, Smooth and fast versus instantaneous quenches in quantum field theory, JHEP 08 (2015) 073 [arXiv:1505.05224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S.R. Das, D.A. Galante and R.C. Myers, Quantum Quenches in Free Field Theory: Universal Scaling at Any Rate, JHEP 05 (2016) 164 [arXiv:1602.08547] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.R. Das, Old and New Scaling Laws in Quantum Quench, Prog. Theor. Exp. Phys. 2016 (2016) 12C107 [arXiv:1608.04407] [INSPIRE].
  28. [28]
    D. Das, S.R. Das, D.A. Galante, R.C. Myers and K. Sengupta, An exactly solvable quench protocol for integrable spin models, JHEP 11 (2017) 157 [arXiv:1706.02322] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Dymarsky and M. Smolkin, Universality of fast quenches from the conformal perturbation theory, JHEP 01 (2018) 112 [arXiv:1709.08654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Goykhman, T. Shachar and M. Smolkin, On fast quenches and spinning correlators, JHEP 06 (2018) 168 [arXiv:1804.03855] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].
  32. [32]
    P. Calabrese and J.L. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].MathSciNetGoogle Scholar
  33. [33]
    L.S. Brown and J.C. Collins, Dimensional Renormalization of Scalar Field Theory in Curved Space-time, Annals Phys. 130 (1980) 215 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C.W. Bernard and A. Duncan, Regularization and Renormalization of Quantum Field Theory in Curved Space-Time, Annals Phys. 107 (1977) 201 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge U.K. (1982).CrossRefzbMATHGoogle Scholar
  36. [36]
    D.W.F. Alves and G. Camilo, Evolution of complexity following a quantum quench in free field theory, JHEP 06 (2018) 029 [arXiv:1804.00107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    H.A. Camargo, P. Caputa, D. Das, M.P. Heller and R. Jefferson, Complexity as a novel probe of quantum quenches: universal scalings and purifications, arXiv:1807.07075 [INSPIRE].
  38. [38]
    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Mikhail Goykhman
    • 1
    Email author
  • Tom Shachar
    • 1
  • Michael Smolkin
    • 1
  1. 1.The Racah Institute of PhysicsThe Hebrew University of JerusalemSderot MagnesIsrael

Personalised recommendations