Advertisement

Dark monopoles in Grand Unified Theories

  • Maria de Lourdes Z. P. Deglmann
  • Marco A. C. KneippEmail author
Open Access
Regular Article - Theoretical Physics
  • 55 Downloads

Abstract

We consider a Yang-Mills-Higgs theory with gauge group G = SU(n) broken to Gv = [SU(p) × SU(np) × U(1)]/Z by a Higgs field in the adjoint representation. We obtain monopole solutions whose magnetic field is not in the Cartan Subalgebra. Since their magnetic field vanishes in the direction of the generator of the U(1)em electromagnetic group, we call them Dark Monopoles. These Dark Monopoles must exist in some Grand Unified Theories (GUTs) without the need to introduce a dark sector. We analyze the particular case of SU(5) GUT, where we obtain that their mass is M = 4πvẼ(λ/e2)/e, where (λ/e2) is a monotonically increasing function of λ/e2 with (0) = 1.294 and (∞) = 3.262. We also give a geometrical interpretation to their non-abelian magnetic charge.

Keywords

Gauge Symmetry Solitons Monopoles and Instantons Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].
  2. [2]
    A.M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194 [INSPIRE].ADSGoogle Scholar
  3. [3]
    E. Corrigan and D.I. Olive, Color and Magnetic Monopoles, Nucl. Phys. B 110 (1976) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Goddard and D.I. Olive, New Developments in the Theory of Magnetic Monopoles, Rept. Prog. Phys. 41 (1978) 1357 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Goddard and D.I. Olive, Charge Quantization in Theories With an Adjoint Representation Higgs Mechanism, Nucl. Phys. B 191 (1981) 511 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    C.P. Dokos and T.N. Tomaras, Monopoles and Dyons in the SU(5) Model, Phys. Rev. D 21 (1980) 2940 [INSPIRE].ADSGoogle Scholar
  7. [7]
    G.B. Gelmini, The Hunt for Dark Matter, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014): Boulder, Colorado, June 2–27, 2014, pp. 559-616, arXiv:1502.01320 [INSPIRE].
  8. [8]
    K. Freese, Status of Dark Matter in the Universe, Int. J. Mod. Phys. 1 (2017) 325 [arXiv:1701.01840] [INSPIRE].Google Scholar
  9. [9]
    C. Gomez Sanchez and B. Holdom, Monopoles, strings and dark matter, Phys. Rev. D 83 (2011) 123524 [arXiv:1103.1632] [INSPIRE].ADSGoogle Scholar
  10. [10]
    V.V. Khoze and G. Ro, Dark matter monopoles, vectors and photons, JHEP 10 (2014) 061 [arXiv:1406.2291] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 10 (2014) 067 [arXiv:1311.1035] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Evslin, Spiked Monopoles, JHEP 03 (2018) 143 [arXiv:1801.04206] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    R. Sato, F. Takahashi and M. Yamada, Unified Origin of Axion and Monopole Dark Matter and Solution to the Domain-wall Problem, Phys. Rev. D 98 (2018) 043535 [arXiv:1805.10533] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Lazarides and Q. Shafi, Monopoles, axions and intermediate mass dark matter, Phys. Lett. B 489 (2000) 194 [hep-ph/0006202] [INSPIRE].
  15. [15]
    H. Murayama and J. Shu, Topological Dark Matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Corrigan, D.I. Olive, D.B. Fairlie and J. Nuyts, Magnetic Monopoles in SU(3) Gauge Theories, Nucl. Phys. B 106 (1976) 475 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Burzlaff, SU(3) monopole with magnetic quantum numbers (0, 2), Phys. Rev. D 23 (1981) 1329 [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    J. Kunz and D. Masak, Finite energy SU(3) monopoles, Phys. Lett. B 196 (1987) 513 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Coleman, The Magnetic Monopole Fifty Years Later, in A. Zichichi ed., The Unity of the Fundamental Interactions, Springer, (1983), [INSPIRE].
  20. [20]
    E.J. Weinberg, D. London and J.L. Rosner, Magnetic Monopoles With Z n Charges, Nucl. Phys. B 236 (1984) 90 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F.A. Bais, Charge-monopole duality in spontaneously broken gauge theories, Phys. Rev. D 18 (1978) 1206 [INSPIRE].ADSGoogle Scholar
  22. [22]
    E.J. Weinberg, Fundamental Monopoles in Theories With Arbitrary Symmetry Breaking, Nucl. Phys. B 203 (1982) 445 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    F.A. Bais and B.J. Schroers, Quantization of monopoles with nonAbelian magnetic charge, Nucl. Phys. B 512 (1998) 250 [hep-th/9708004] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    B.J. Schroers and F.A. Bais, S duality in Yang-Mills theory with nonAbelian unbroken gauge group, Nucl. Phys. B 535 (1998) 197 [hep-th/9805163] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    M.A.C. Kneipp and P.J. Liebgott, ℤ2 monopoles in SU(n) Yang-Mills-Higgs theories, Phys. Rev. D 81 (2010) 045007 [arXiv:0909.0034] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M.A.C. Kneipp and P.J. Liebgott, BPS2 monopoles and N = 2SU(n) superconformal field theories on the Higgs branch, Phys. Rev. D 87 (2013) 025024 [arXiv:1210.7243] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Aryal and A.E. Everett, Properties of Z 2 Strings, Phys. Rev. D 35 (1987) 3105 [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.-P. Ma, SO(10) cosmic strings and baryon number violation, Phys. Rev. D 48 (1993) 530 [hep-ph/9211206] [INSPIRE].
  29. [29]
    A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press, (1994), [INSPIRE].
  30. [30]
    M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342] [INSPIRE].
  31. [31]
    A.-C. Davis and S.C. Davis, Microphysics of SO(10) cosmic strings, Phys. Rev. D 55 (1997) 1879 [hep-ph/9608206] [INSPIRE].
  32. [32]
    T.W.B. Kibble, G. Lozano and A.J. Yates, NonAbelian string conductivity, Phys. Rev. D 56 (1997) 1204 [hep-ph/9701240] [INSPIRE].
  33. [33]
    M.A.C. Kneipp and P.J. Liebgott, New3 strings, Phys. Lett. B 763 (2016) 186 [arXiv:1610.01654] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, INC., (1978).Google Scholar
  35. [35]
    W.-K. Tung, Group Theory in Physics, World Scientific, (1985).Google Scholar
  36. [36]
    A. Abouelsaood, Are there chromodyons?, Nucl. Phys. B 226 (1983) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Abouelsaood, Chromodyons and Equivariant Gauge Transformations, Phys. Lett. B 125 (1983) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.P. Balachandran, G. Marmo, N. Mukunda, J.S. Nilsson, E.C.G. Sudarshan and F. Zaccaria, Monopole Topology and the Problem of Color, Phys. Rev. Lett. 50 (1983) 1553 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A.P. Balachandran, G. Marmo, N. Mukunda, J.S. Nilsson, E.C.G. Sudarshan and F. Zaccaria, Non-Abelian monopoles break color. I. Classical mechanics, Phys. Rev. D 29 (1984) 2919 [INSPIRE].
  40. [40]
    A.P. Balachandran, G. Marmo, N. Mukunda, J.S. Nilsson, E.C.G. Sudarshan and F. Zaccaria, Non-Abelian monopoles break color. II. Field theory and quantum mechanics, Phys. Rev. D 29 (1984) 2936 [INSPIRE].
  41. [41]
    P.C. Nelson and A. Manohar, Global Color Is Not Always Defined, Phys. Rev. Lett. 50 (1983) 943 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P.C. Nelson and S.R. Coleman, What Becomes of Global Color, Nucl. Phys. B 237 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P.A. Horvathy and J.H. Rawnsley, Internal Symmetries of Nonabelian Gauge Field Configurations, Phys. Rev. D 32 (1985) 968 [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    P.A. Horvathy and J.H. Rawnsley, The Problem ofGlobal Colorin Gauge Theories, J. Math. Phys. 27 (1986) 982 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    P. Irwin, SU(3) monopoles and their fields, Phys. Rev. D 56 (1997) 5200 [hep-th/9704153] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    E.B. Bogomolny, Stability of Classical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [INSPIRE].MathSciNetGoogle Scholar
  47. [47]
    R.G. Barrera, G.A. Estévez and J. Giraldo, Vector spherical harmonics and their application to magnetostatics, Eur. J. Phys. 6 (1985) 287.CrossRefGoogle Scholar
  48. [48]
    P. Forgács, N. Obadia and S. Reuillon, Numerical and asymptotic analysis of thet Hooft-Polyakov magnetic monopole, Phys. Rev. D 71 (2005) 035002 [Erratum ibid. D 71 (2005) 119902] [hep-th/0412057] [INSPIRE].
  49. [49]
    T.W. Kirkman and C.K. Zachos, Asymptotic Analysis of the Monopole Structure, Phys. Rev. D 24 (1981) 999 [INSPIRE].ADSGoogle Scholar
  50. [50]
    M.K. Prasad and C.M. Sommerfield, An Exact Classical Solution for thet Hooft Monopole and the Julia-Zee Dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L.F. Abbott and S. Deser, Charge Definition in Nonabelian Gauge Theories, Phys. Lett. B 116 (1982) 259 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    S. Coleman, Aspects of Symmetry, Cambridge University Press, (1985).Google Scholar
  54. [54]
    J. Arafune, P.G.O. Freund and C.J. Goebel, Topology of Higgs Fields, J. Math. Phys. 16 (1975) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    E. Kolb and M. Turner, The Early Universe, Addison-Wesley Publishing Company, (1990).Google Scholar
  56. [56]
    J. Preskill, Cosmological Production of Superheavy Magnetic Monopoles, Phys. Rev. Lett. 43 (1979) 1365 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E.J. Weinberg, Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Eneergy Physics, Cambridge University Press, (2012), [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Universidade Federal de Santa Catarina (UFSC), Departamento de Física, CFMFlorianópolisBrazil

Personalised recommendations