Probing new electroweak states via precision measurements at the LHC and future colliders

  • Luca Di LuzioEmail author
  • Ramona Gröber
  • Giuliano Panico
Open Access
Regular Article - Theoretical Physics


Several new physics scenarios, motivated e.g. by dark matter, feature new electroweakly charged states where the lightest particle in the multiplet is stable and neutral. In such cases direct searches at LHC are notoriously difficult, while electroweak precision tests both at hadron and lepton colliders offer the possibility to indirectly probe those states. In this work, we assess the sensitivity of the high-luminosity phase of the LHC on new electroweak multiplets via the modification of neutral and charged Drell-Yan processes, and compare the reach of future hadron and lepton colliders presently under consideration.


Beyond Standard Model Supersymmetric Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard Charged Current Interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. de Blas, M. Chala and J. Santiago, Global Constraints on Lepton-Quark Contact Interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].
  4. [4]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
  5. [5]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
  6. [6]
    A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].
  8. [8]
    R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Banerjee, C. Englert, R.S. Gupta and M. Spannowsky, Probing Electroweak Precision Physics via boosted Higgs-strahlung at the LHC, Phys. Rev. D 98 (2018) 095012 [arXiv:1807.01796] [INSPIRE].
  10. [10]
    A. Voigt and S. Westhoff, Virtual signatures of dark sectors in Higgs couplings, JHEP 11 (2017) 009 [arXiv:1708.01614] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Becciolini, M. Gillioz, M. Nardecchia, F. Sannino and M. Spannowsky, Constraining new colored matter from the ratio of 3 to 2 jets cross sections at the LHC, Phys. Rev. D 91 (2015) 015010 [Addendum ibid. D 92 (2015) 079905] [arXiv:1403.7411] [INSPIRE].
  12. [12]
    D.S.M. Alves, J. Galloway, J.T. Ruderman and J.R. Walsh, Running Electroweak Couplings as a Probe of New Physics, JHEP 02 (2015) 007 [arXiv:1410.6810] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Gross, O. Lebedev and J.M. No, Drell-Yan constraints on new electroweak states: LHC as a ppl + l precision machine, Mod. Phys. Lett. A 32 (2017) 1750094 [arXiv:1602.03877] [INSPIRE].
  14. [14]
    K. Harigaya, K. Ichikawa, A. Kundu, S. Matsumoto and S. Shirai, Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders, JHEP 09 (2015) 105 [arXiv:1504.03402] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Matsumoto, S. Shirai and M. Takeuchi, Indirect Probe of Electroweakly Interacting Particles at the High-Luminosity Large Hadron Collider, JHEP 06 (2018) 049 [arXiv:1711.05449] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Benedikt and F. Zimmermann, Proton Colliders at the Energy Frontier, Nucl. Instrum. Meth. A 907 (2018) 200 [arXiv:1803.09723] [INSPIRE].
  17. [17]
    I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg and L.-T. Wang, Luminosity goals for a 100-TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1544002 [arXiv:1504.06108] [INSPIRE].
  18. [18]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  19. [19]
    L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and Detectors at CLIC: CLIC Conceptual Design Report, arXiv:1202.5940 [INSPIRE].
  20. [20]
    J.-P. Delahaye et al., Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., July 29-August 6, 2013 [arXiv:1308.0494] [INSPIRE].
  21. [21]
    M. Antonelli, M. Boscolo, R. Di Nardo and P. Raimondi, Novel proposal for a low emittance muon beam using positron beam on target, Nucl. Instrum. Meth. A 807 (2016) 101 [arXiv:1509.04454] [INSPIRE].
  22. [22]
    F. Collamati et al., Low Emittance Muon Beams from Positrons, PoS(NuFact2017)103 (2017).Google Scholar
  23. [23]
    M. Boscolo et al., Low emittance muon accelerator studies with production from positrons on target, Phys. Rev. Accel. Beams 21 (2018) 061005 [arXiv:1803.06696] [INSPIRE].
  24. [24]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  25. [25]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].
  26. [26]
    M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. Di Luzio, R. Gröber, J.F. Kamenik and M. Nardecchia, Accidental matter at the LHC, JHEP 07 (2015) 074 [arXiv:1504.00359] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    E. Del Nobile, M. Nardecchia and P. Panci, Millicharge or Decay: A Critical Take on Minimal Dark Matter, JCAP 04 (2016) 048 [arXiv:1512.05353] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].
  31. [31]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
  32. [32]
    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(α s2), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].
  33. [33]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].
  34. [34]
    S. Catani, G. Ferrera and M. Grazzini, W Boson Production at Hadron Colliders: The Lepton Charge Asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].
  36. [36]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  37. [37]
    M. Aicheler et al., A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report, CERN-2012-007 [INSPIRE].
  38. [38]
  39. [39]
    D. Buttazzo, D. Redigolo, F. Sala and A. Tesi, Fusing Vectors into Scalars at High Energy Lepton Colliders, JHEP 11 (2018) 144 [arXiv:1807.04743] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Wulzer, Beyond Standard Model: Where do we go from here?, GGI, Florence, (2018).
  41. [41]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  42. [42]
    CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].
  43. [43]
    A. Bharucha, F. Brümmer and N. Desai, Next-to-minimal dark matter at the LHC, JHEP 11 (2018) 195 [arXiv:1804.02357] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].
  45. [45]
    CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s} = 8 \) TeV, JHEP 01 (2015) 096 [arXiv:1411.6006] [INSPIRE].
  46. [46]
    ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 06 (2018) 022 [arXiv:1712.02118] [INSPIRE].
  47. [47]
    M. Cirelli, F. Sala and M. Taoso, Wino-like Minimal Dark Matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  48. [48]
    B. Ostdiek, Constraining the minimal dark matter fiveplet with LHC searches, Phys. Rev. D 92 (2015) 055008 [arXiv:1506.03445] [INSPIRE].
  49. [49]
    H. Fukuda, N. Nagata, H. Otono and S. Shirai, Higgsino Dark Matter or Not: Role of Disappearing Track Searches at the LHC and Future Colliders, Phys. Lett. B 781 (2018) 306 [arXiv:1703.09675] [INSPIRE].
  50. [50]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  51. [51]
    T. Han, S. Mukhopadhyay and X. Wang, Electroweak Dark Matter at Future Hadron Colliders, Phys. Rev. D 98 (2018) 035026 [arXiv:1805.00015] [INSPIRE].
  52. [52]
    Q.-H. Cao, T. Gong, K.-P. Xie and Z. Zhang, Measuring Relic Abundance of Minimal Dark Matter at Hadron Colliders, arXiv:1810.07658 [INSPIRE].
  53. [53]
    OPAL collaboration, Search for nearly mass degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [INSPIRE].
  54. [54]
    S. Chigusa, Y. Ema and T. Moroi, Probing Electroweakly Interacting Massive Particles with Drell-Yan Process at 100 TeV Hadron Colliders, Phys. Lett. B 788 (2019) 494 [arXiv:1810.07349] [INSPIRE].
  55. [55]
    A. Djouadi and P. Gambino, Electroweak gauge bosons selfenergies: Complete QCD corrections, Phys. Rev. D 49 (1994) 3499 [Erratum ibid. D 53 (1996) 4111] [hep-ph/9309298] [INSPIRE].
  56. [56]
    F. Goertz, J.F. Kamenik, A. Katz and M. Nardecchia, Indirect Constraints on the Scalar Di-Photon Resonance at the LHC, JHEP 05 (2016) 187 [arXiv:1512.08500] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Luca Di Luzio
    • 1
    • 2
    Email author
  • Ramona Gröber
    • 3
    • 2
  • Giuliano Panico
    • 4
    • 5
  1. 1.Dipartimento di FisicaUniversità di Pisa and INFNPisaItaly
  2. 2.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamUnited Kingdom
  3. 3.Humboldt-Universität zu Berlin, Institut für PhysikBerlinGermany
  4. 4.Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  5. 5.IFAE and BIST, Universitat Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations