Planck 2018 and brane inflation revisited

  • Renata Kallosh
  • Andrei Linde
  • Yusuke YamadaEmail author
Open Access
Regular Article - Theoretical Physics


We revisit phenomenological as well as string-theoretical aspects of D-brane inflation cosmological models. Phenomenologically these models stand out on par with α-attractors, as models with Planck-compatible values of ns, moving down to the sweet spot in the data with decreasing value of r. On the formal side we present a new supersymmetric version of these models in the context of de Sitter supergravity with a nilpotent multiplet and volume modulus stabilization. The geometry of the nilpotent multiplet is evaluated in the framework of string theory.


Cosmology of Theories beyond the SM D-branes Supergravity Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
  2. [2]
    R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].
  3. [3]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99.Google Scholar
  4. [4]
    A.S. Goncharov and A.D. Linde, Chaotic inflation of the universe in supergravity, Sov. Phys. JETP 59 (1984) 930 [INSPIRE].Google Scholar
  5. [5]
    D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing density fluctuation spectra in inflation, Phys. Rev. D 40 (1989) 1753 [INSPIRE].
  6. [6]
    F.L. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
  7. [7]
    J.J.M. Carrasco, R. Kallosh and A. Linde, α-attractors: Planck, LHC and dark energy, JHEP 10 (2015) 147 [arXiv:1506.01708] [INSPIRE].
  8. [8]
    R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP 07 (2013) 002 [arXiv:1306.5220] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre inflation: observable gravity waves from IIB string compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Kallosh, A. Linde, D. Roest, A. Westphal and Y. Yamada, Fibre inflation and α-attractors, JHEP 02 (2018) 117 [arXiv:1707.05830] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Ferrara and R. Kallosh, Seven-disk manifold, α-attractors and B modes, Phys. Rev. D 94 (2016) 126015 [arXiv:1610.04163] [INSPIRE].
  12. [12]
    R. Kallosh, A. Linde, T. Wrase and Y. Yamada, Maximal supersymmetry and B-mode targets, JHEP 04 (2017) 144 [arXiv:1704.04829] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    L. Lorenz, J. Martin and C. Ringeval, Brane inflation and the WMAP data: a Bayesian analysis, JCAP 04 (2008) 001 [arXiv:0709.3758] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Martin, C. Ringeval and V. Vennin, Encyclopædia inflationaris, Phys. Dark Univ. 5-6 (2014) 75 [arXiv:1303.3787] [INSPIRE].
  16. [16]
    G.R. Dvali, Q. Shafi and S. Solganik, D-brane inflation, talk given at the 4th European Meeting From the Planck Scale to the Electroweak Scale (Planck 2001), May 11-16, La Londe les Maures, Toulon, France (2001), hep-th/0105203 [INSPIRE].
  17. [17]
    C.P. Burgess et al., The inflationary brane anti-brane universe, JHEP 07 (2001) 047 [hep-th/0105204] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. García-Bellido, R. Rabadán and F. Zamora, Inflationary scenarios from branes at angles, JHEP 01 (2002) 036 [hep-th/0112147] [INSPIRE].
  19. [19]
    D. Baumann, A. Dymarsky, I.R. Klebanov and L. McAllister, Towards an explicit model of D-brane inflation, JCAP 01 (2008) 024 [arXiv:0706.0360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Baumann and L. McAllister, Inflation and string theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  21. [21]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
  22. [22]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
  23. [23]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].
  24. [24]
    L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The powers of monodromy, JHEP 09 (2014) 123 [arXiv:1405.3652] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys. 2018 (2018) 1800071 [arXiv:1808.09427] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    J. Blåbäck, U. Danielsson and G. Dibitetto, A new light on the darkest corner of the landscape, arXiv:1810.11365 [INSPIRE].
  27. [27]
    J. Polchinski, TASI lectures on D-branes, talk given at the Fields, strings and duality. Proceedings, Summer School, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI’96), June 2-28, Boulder, USA (1996), hep-th/9611050 [INSPIRE].
  28. [28]
    C.P. Bachas, Lectures on D-branes, talk given at the Duality and supersymmetric theories, April 7-18, Cambridge, U.K. (1998), hep-th/9806199 [INSPIRE].
  29. [29]
    E. Kiritsis, Introduction to superstring theory, Leuven notes in mathematical and theoretical physics volume B9, Leuven University Press, Leuven, Belgium (1998).Google Scholar
  30. [30]
    K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, D3/D7 inflationary model and M-theory, Phys. Rev. D 65 (2002) 126002 [hep-th/0203019] [INSPIRE].
  31. [31]
    J.P. Hsu, R. Kallosh and S. Prokushkin, On brane inflation with volume stabilization, JCAP 12 (2003)009 [hep-th/0311077] [INSPIRE].
  32. [32]
    J.P. Hsu and R. Kallosh, Volume stabilization and the origin of the inflaton shift symmetry in string theory, JHEP 04 (2004) 042 [hep-th/0402047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R. Kallosh, On inflation in string theory, Lect. Notes Phys. 738 (2008) 119 [hep-th/0702059].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Haack et al., Update of D3/D7-brane inflation on K3 × T 2 /2, Nucl. Phys. B 806 (2009)103 [arXiv:0804.3961] [INSPIRE].
  35. [35]
    M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].
  36. [36]
    L. McAllister, An Inflaton mass problem in string inflation from threshold corrections to volume stabilization, JCAP 02 (2006) 010 [hep-th/0502001] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].
  39. [39]
    L. Görlich, S. Kachru, P.K. Tripathy and S.P. Trivedi, Gaugino condensation and nonperturbative superpotentials in flux compactifications, JHEP 12 (2004) 074 [hep-th/0407130] [INSPIRE].MathSciNetGoogle Scholar
  40. [40]
    E. Bergshoeff et al., An Index for the Dirac operator on D3 branes with background fluxes, JHEP 10 (2005) 102 [hep-th/0507069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R. Kallosh and T. Wrase, Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    E.A. Bergshoeff et al., \( \overline{\mathrm{D}3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].
  44. [44]
    R. Kallosh, F. Quevedo and A.M. Uranga, String theory realizations of the nilpotent goldstino, JHEP 12 (2015) 039 [arXiv:1507.07556] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].
  46. [46]
    F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensional \( \mathcal{N}=1 \) supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].
  47. [47]
    D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [INSPIRE].ADSzbMATHGoogle Scholar
  48. [48]
    E. McDonough and M. Scalisi, Inflation from nilpotent Kähler corrections, JCAP 11 (2016) 028 [arXiv:1609.00364] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R. Kallosh, A. Linde, D. Roest and Y. Yamada, \( \overline{D3} \) induced geometric inflation, JHEP 07 (2017) 057 [arXiv:1705.09247] [INSPIRE].
  50. [50]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  51. [51]
    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].
  52. [52]
    A. Linde, Y. Mambrini and K.A. Olive, Supersymmetry breaking due to moduli stabilization in string theory, Phys. Rev. D 85 (2012) 066005 [arXiv:1111.1465] [INSPIRE].
  53. [53]
    E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].
  54. [54]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].
  55. [55]
    J.J. Blanco-Pillado, R. Kallosh and A.D. Linde, Supersymmetry and stability of flux vacua, JHEP 05 (2006) 053 [hep-th/0511042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic classes of metastable de Sitter vacua, JHEP 10 (2014) 011 [arXiv:1406.4866] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    F. Hasegawa, K. Nakayama, T. Terada and Y. Yamada, Gravitino problem in inflation driven by inflaton-polonyi Kähler coupling, Phys. Lett. B 777 (2018) 270 [arXiv:1709.01246] [INSPIRE].
  58. [58]
    WMAP collaboration, D.N. Spergel et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175 [astro-ph/0302209] [INSPIRE].
  59. [59]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  60. [60]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  61. [61]
    Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations