Confronting SUSY SO(10) with updated Lattice and Neutrino data

  • Thomas Deppisch
  • Stefan Schacht
  • Martin Spinrath
Open Access
Regular Article - Theoretical Physics


We present an updated fit of supersymmetric SO(10) models to quark and lepton masses and mixing parameters. Including latest results from lattice QCD determinations of quark masses and neutrino oscillation data, we show that fits neglecting supersymmetric threshold corrections are strongly disfavoured in our setup. Only when we include these corrections we find good fit points. We present χ2-profiles for the threshold parameters, which show that in our setup the thresholds related to the third generation of fermions exhibit two rather narrow minima.


GUT Neutrino Physics Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Georgi, The State of the Art — Gauge Theories, AIP Conf. Proc. 23 (1975) 575.ADSCrossRefGoogle Scholar
  2. [2]
    H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].
  4. [4]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
  5. [5]
    M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].
  6. [6]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].
  7. [7]
    T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan β regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [INSPIRE].
  8. [8]
    C.S. Aulakh and R.N. Mohapatra, Implications of Supersymmetric SO(10) Grand Unification, Phys. Rev. D 28 (1983) 217 [INSPIRE].
  9. [9]
    T.E. Clark, T.-K. Kuo and N. Nakagawa, A SO(10) Supersymmetric Grand Unified Theory, Phys. Lett. B 115 (1982) 26 [INSPIRE].
  10. [10]
    B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].
  11. [11]
    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].
  12. [12]
    L. Lavoura, Predicting the neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. D 48 (1993) 5440 [hep-ph/9306297] [INSPIRE].
  13. [13]
    F. Vissani and A. Yu. Smirnov, Neutrino masses and b-τ unification in the supersymmetric standard model, Phys. Lett. B 341 (1994) 173 [hep-ph/9405399] [INSPIRE].
  14. [14]
    B. Brahmachari and R.N. Mohapatra, Unified explanation of the solar and atmospheric neutrino puzzles in a minimal supersymmetric SO(10) model, Phys. Rev. D 58 (1998) 015001 [hep-ph/9710371] [INSPIRE].
  15. [15]
    K. Matsuda, T. Fukuyama and H. Nishiura, SO(10) GUT and quark lepton mass matrices, Phys. Rev. D 61 (2000) 053001 [hep-ph/9906433] [INSPIRE].
  16. [16]
    C.S. Aulakh, B. Bajc, A. Melfo, A. Rasin and G. Senjanović, SO(10) theory of R-parity and neutrino mass, Nucl. Phys. B 597 (2001) 89 [hep-ph/0004031] [INSPIRE].
  17. [17]
    B. Bajc, G. Senjanović and F. Vissani, How neutrino and charged fermion masses are connected within minimal supersymmetric SO(10), PoS(HEP2001)198 (2001) [hep-ph/0110310] [INSPIRE].
  18. [18]
    T. Fukuyama and N. Okada, Neutrino oscillation data versus minimal supersymmetric SO(10) model, JHEP 11 (2002) 011 [hep-ph/0205066] [INSPIRE].
  19. [19]
    N. Oshimo, Antisymmetric Higgs representation in SO(10) for neutrinos, Phys. Rev. D 66 (2002)095010 [hep-ph/0206239] [INSPIRE].
  20. [20]
    B. Bajc, G. Senjanović and F. Vissani, b-τ unification and large atmospheric mixing: A case for noncanonical seesaw, Phys. Rev. Lett. 90 (2003) 051802 [hep-ph/0210207] [INSPIRE].
  21. [21]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10), b-τ unification and large neutrino mixings, Phys. Lett. B 570 (2003) 215 [hep-ph/0303055] [INSPIRE].
  22. [22]
    N. Oshimo, Model for neutrino mixing based on SO(10), Nucl. Phys. B 668 (2003) 258 [hep-ph/0305166] [INSPIRE].
  23. [23]
    C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The minimal supersymmetric grand unified theory, Phys. Lett. B 588 (2004) 196 [hep-ph/0306242] [INSPIRE].
  24. [24]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP-violation, Phys. Rev. D 68 (2003) 115008 [hep-ph/0308197] [INSPIRE].
  25. [25]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The minimal supersymmetric grand unified theory. 1. Symmetry breaking and the particle spectrum, Phys. Rev. D 70 (2004) 035007 [hep-ph/0402122] [INSPIRE].
  26. [26]
    B. Bajc, G. Senjanović and F. Vissani, Probing the nature of the seesaw in renormalizable SO(10), Phys. Rev. D 70 (2004) 093002 [hep-ph/0402140] [INSPIRE].
  27. [27]
    C.S. Aulakh and A. Girdhar, SO(10) MSGUT: Spectra, couplings and threshold effects, Nucl. Phys. B 711 (2005) 275 [hep-ph/0405074] [INSPIRE].
  28. [28]
    S. Bertolini, M. Frigerio and M. Malinsky, Fermion masses in SUSY SO(10) with type-II seesaw: A non-minimal predictive scenario, Phys. Rev. D 70 (2004) 095002 [hep-ph/0406117] [INSPIRE].
  29. [29]
    B. Dutta, Y. Mimura and R.N. Mohapatra, Neutrino masses and mixings in a predictive SO(10) model with CKM CP-violation, Phys. Lett. B 603 (2004) 35 [hep-ph/0406262] [INSPIRE].
  30. [30]
    S. Bertolini and M. Malinsky, On CP-violation in minimal renormalizable SUSY SO(10) and beyond, Phys. Rev. D 72 (2005) 055021 [hep-ph/0504241] [INSPIRE].
  31. [31]
    K.S. Babu and C. Macesanu, Neutrino masses and mixings in a minimal SO(10) model, Phys. Rev. D 72 (2005) 115003 [hep-ph/0505200] [INSPIRE].
  32. [32]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Fermion mass relations in a supersymmetric SO(10) theory, Phys. Lett. B 634 (2006) 272 [hep-ph/0511352] [INSPIRE].
  33. [33]
    C.S. Aulakh and S.K. Garg, MSGUT: From bloom to doom, Nucl. Phys. B 757 (2006) 47 [hep-ph/0512224] [INSPIRE].
  34. [34]
    S. Bertolini, T. Schwetz and M. Malinsky, Fermion masses and mixings in SO(10) models and the neutrino challenge to SUSY GUTs, Phys. Rev. D 73 (2006) 115012 [hep-ph/0605006] [INSPIRE].
  35. [35]
    W. Grimus and H. Kuhbock, Fermion masses and mixings in a renormalizable SO(10) × Z 2 GUT, Phys. Lett. B 643 (2006) 182 [hep-ph/0607197] [INSPIRE].
  36. [36]
    C.S. Aulakh and S.K. Garg, The New Minimal Supersymmetric GUT: Spectra, RG analysis and fitting formulae, hep-ph/0612021 [INSPIRE].
  37. [37]
    T. Fukuyama, K. Matsuda and H. Nishiura, Zero texture model and SO(10) GUT, Int. J. Mod. Phys. A 22 (2007) 5325 [hep-ph/0702284] [INSPIRE].
  38. [38]
    G. Ross and M. Serna, Unification and fermion mass structure, Phys. Lett. B 664 (2008) 97 [arXiv:0704.1248] [INSPIRE].
  39. [39]
    C.S. Aulakh, Pinning down the new minimal supersymmetric GUT, Phys. Lett. B 661 (2008)196 [arXiv:0710.3945] [INSPIRE].
  40. [40]
    C.S. Aulakh and S.K. Garg, Correcting α 3(M Z ) in the NMSGUT, Mod. Phys. Lett. A 24 (2009)1711 [arXiv:0710.4018] [INSPIRE].
  41. [41]
    C.S. Aulakh and S.K. Garg, The New Minimal Supersymmetric GUT: Spectra, RG analysis and Fermion Fits, Nucl. Phys. B 857 (2012) 101 [arXiv:0807.0917] [INSPIRE].
  42. [42]
    B. Bajc, I. Dorsner and M. Nemevšek, Minimal SO(10) splits supersymmetry, JHEP 11 (2008) 007 [arXiv:0809.1069] [INSPIRE].
  43. [43]
    G. Altarelli and G. Blankenburg, Different SO(10) Paths to Fermion Masses and Mixings, JHEP 03 (2011) 133 [arXiv:1012.2697] [INSPIRE].
  44. [44]
    A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].
  45. [45]
    P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino Mixings in SO(10) with Type II Seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].
  46. [46]
    P.S. Bhupal Dev, B. Dutta, R.N. Mohapatra and M. Severson, θ 13 and Proton Decay in a Minimal SO(10) × S 4 model of Flavor, Phys. Rev. D 86 (2012) 035002 [arXiv:1202.4012] [INSPIRE].
  47. [47]
    F. Buccella, D. Falcone, C.S. Fong, E. Nardi and G. Ricciardi, Squeezing out predictions with leptogenesis from SO(10), Phys. Rev. D 86 (2012) 035012 [arXiv:1203.0829] [INSPIRE].
  48. [48]
    S. Dev, S. Kumar, S. Verma, S. Gupta and R.R. Gautam, Four Zero Texture Fermion Mass Matrices in SO(10) GUT, Eur. Phys. J. C 72 (2012) 1940 [arXiv:1203.1403] [INSPIRE].
  49. [49]
    G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below M GUT, JHEP 08 (2013) 021 [arXiv:1305.1001] [INSPIRE].
  50. [50]
    A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024 [arXiv:1306.4468] [INSPIRE].
  51. [51]
    K.S. Babu, B. Bajc and S. Saad, Yukawa Sector of Minimal SO(10) Unification, JHEP 02 (2017)136 [arXiv:1612.04329] [INSPIRE].
  52. [52]
    K.S. Babu, B. Bajc and S. Saad, Resurrecting Minimal Yukawa Sector of SUSY SO(10), JHEP 10 (2018) 135 [arXiv:1805.10631] [INSPIRE].
  53. [53]
    A. Freitas, E. Gasser and U. Haisch, Supersymmetric large tan β corrections to ΔM d,s and B d,sμ + μ revisited, Phys. Rev. D 76 (2007) 014016 [hep-ph/0702267] [INSPIRE].
  54. [54]
    S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [INSPIRE].
  55. [55]
    S.F. King, Unified Models of Neutrinos, Flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017)217 [arXiv:1701.04413] [INSPIRE].
  56. [56]
    S. Antusch and M. Ratz, Supergraph techniques and two loop β-functions for renormalizable and nonrenormalizable operators, JHEP 07 (2002) 059 [hep-ph/0203027] [INSPIRE].
  57. [57]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].
  58. [58]
    K. Ahnert and M. Mulansky, Odeint - Solving Ordinary Differential Equations in C++, AIP Conf. Proc. 1389 (2011) 001.Google Scholar
  59. [59]
    G. Guennebaud et al., Eigen v3,, (2010).
  60. [60]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].
  61. [61]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  62. [62]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000)43 [hep-ph/0004189] [INSPIRE].
  63. [63]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].
  64. [64]
    CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
  65. [65]
    UTfit collaboration, M. Bona et al., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07 (2005) 028 [hep-ph/0501199] [INSPIRE].
  66. [66]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
  67. [67]
    S.P. Martin and M.T. Vaughn, Regularization dependence of running couplings in softly broken supersymmetry, Phys. Lett. B 318 (1993) 331 [hep-ph/9308222] [INSPIRE].
  68. [68]
    M. Spinrath, New Aspects of Flavour Model Building in Supersymmetric Grand Unification, arXiv:1009.2511 [INSPIRE].
  69. [69]
    S. Antusch, L. Calibbi, V. Maurer and M. Spinrath, From Flavour to SUSY Flavour Models, Nucl. Phys. B 852 (2011) 108 [arXiv:1104.3040] [INSPIRE].
  70. [70]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [INSPIRE].
  72. [72]
    M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t}b{H}^{+} \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].
  73. [73]
    S.G. Johnson, The NLopt nonlinear-optimization package,
  74. [74]
    T. Rowan, Functional Stability Analysis of Numerical Algorithms, Ph.D. Thesis, Department of Computer Sciences, University of Texas at Austin, U.S.A., (1990).Google Scholar
  75. [75]
    T.P. Runarsson and X. Yao, Search biases in constrained evolutionary optimization, IEEE Trans. Syst. Man Cybern. 35 (2005) 233.Google Scholar
  76. [76]
    T.P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Trans. Evol. Comput. 4 (2000) 284.CrossRefGoogle Scholar
  77. [77]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  78. [78]
    Troitsk collaboration, V.N. Aseev et al., An upper limit on electron antineutrino mass from Troitsk experiment, Phys. Rev. D 84 (2011) 112003 [arXiv:1108.5034] [INSPIRE].
  79. [79]
    KATRIN collaboration, A. Osipowicz et al., KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, hep-ex/0109033 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of Physics, LEPPCornell UniversityIthacaU.S.A.
  3. 3.Dipartimento di Fisica, Università di Torino & INFNTorinoItaly
  4. 4.Department of PhysicsNational Tsing Hua UniversityHsinchuTaiwan
  5. 5.Physics Division, National Center for Theoretical SciencesHsinchuTaiwan

Personalised recommendations