A functional RG approach for the BFKL Pomeron

  • Jochen Bartels
  • Carlos Contreras
  • Gian Paolo VaccaEmail author
Open Access
Regular Article - Theoretical Physics


In this paper we encode the perturbative BFKL leading logarithmic resummation, relevant for the Regge limit behavior of QCD scattering amplitudes, in the IR-regulated effective action which satisfies exact functional renormalization group equations. This is obtained using a truncation with a specific infinite set of non local vertices describing the multi-Regge kinematics (MRK). The goal is to use this framework to study, in the high energy limit and at larger transverse distances the transition to a much simpler effective local reggeon field theory, whose critical properties were recently investigated in the same framework. We perform a numerical analysis of the spectrum of the BFKL Pomeron deformed by the introduction of a Wilsonian infrared regulator to understand the properties of the leading poles (states) contributing to the high energy scattering.


Effective Field Theories Perturbative QCD Renormalization Group Resummation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Bartels, C. Contreras and G.P. Vacca, Could reggeon field theory be an effective theory for QCD in the Regge limit?, JHEP 03 (2016) 201 [arXiv:1512.07182] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Bartels, C. Contreras and G.P. Vacca, Pomeron-Odderon interactions in a reggeon field theory, Phys. Rev. D 95 (2017) 014013 [arXiv:1608.08836] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329 (1994) 241 [hep-ph/9403340] [INSPIRE].
  5. [5]
    V.N. Gribov and A.A. Migdal, Strong coupling in the Pomeranchuk pole problem, Sov. Phys. JETP 28 (1969) 784 [Zh. Eksp. Teor. Fiz. 55 (1968) 1498] [INSPIRE].
  6. [6]
    V.N. Gribov and A.A. Migdal, Properties of the Pomeranchuk pole and the branch cuts related to it at low momentum transfer, Sov. J. Nucl. Phys. 8 (1969) 583 [Yad. Fiz. 8 (1968) 1002] [INSPIRE].
  7. [7]
    H.D.I. Abarbanel and J.B. Bronzan, Structure of the Pomeranchuk singularity in reggeon field theory, Phys. Rev. D 9 (1974) 2397 [INSPIRE].ADSGoogle Scholar
  8. [8]
    A.A. Migdal, A.M. Polyakov and K.A. Ter-Martirosian, Theory of interacting Pomerons, Phys. Lett. B 48 (1974) 239 [Pisma Zh. Eksp. Teor. Fiz. 68 (1975) 817] [INSPIRE].
  9. [9]
    V.A. Abramovsky, V.N. Gribov and O.V. Kancheli, Character of inclusive spectra and fluctuations produced in inelastic processes by multi-Pomeron exchange, Yad. Fiz. 18 (1973) 595 [Sov. J. Nucl. Phys. 18 (1974) 308] [INSPIRE].
  10. [10]
    J. Bartels, M. Salvadore and G.P. Vacca, AGK cutting rules and multiple scattering in hadronic collisions, Eur. Phys. J. C 42 (2005) 53 [hep-ph/0503049] [INSPIRE].
  11. [11]
    L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
  12. [12]
    L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].
  13. [13]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].
  14. [14]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].
  15. [15]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
  16. [16]
    J. Bartels and M. Wusthoff, The triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Bartels, L.N. Lipatov and M. Wusthoff, Conformal invariance of the transition vertex 2 → 4 gluons, Nucl. Phys. B 464 (1996) 298 [hep-ph/9509303] [INSPIRE].
  18. [18]
    M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit N c → ∞, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].
  19. [19]
    J. Bartels, M.G. Ryskin and G.P. Vacca, On the triple Pomeron vertex in perturbative QCD, Eur. Phys. J. C 27 (2003) 101 [hep-ph/0207173] [INSPIRE].
  20. [20]
    J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Mobius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].
  21. [21]
    J. Bartels, L.N. Lipatov and G.P. Vacca, A new odderon solution in perturbative QCD, Phys. Lett. B 477 (2000) 178 [hep-ph/9912423] [INSPIRE].
  22. [22]
    R.A. Janik and J. Wosiek, Solution of the odderon problem, Phys. Rev. Lett. 82 (1999) 1092 [hep-th/9802100] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Braun, G.P. Vacca and G. Venturi, Properties of the hard Pomeron with a running coupling constant and the high-energy scattering, Phys. Lett. B 388 (1996) 823 [hep-ph/9605304] [INSPIRE].
  24. [24]
    E. Levin, L. Lipatov and M. Siddikov, BFKL Pomeron with massive gluons and running coupling, Phys. Rev. D 94 (2016) 096004 [arXiv:1608.03816] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Levin, L. Lipatov and M. Siddikov, Semiclassical solution to the BFKL equation with massive gluons, Eur. Phys. J. C 75 (2015) 558 [arXiv:1508.04118] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Levin, L. Lipatov and M. Siddikov, BFKL Pomeron with massive gluons, Phys. Rev. D 89 (2014) 074002 [arXiv:1401.4671] [INSPIRE].ADSGoogle Scholar
  27. [27]
    L.N. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [INSPIRE].
  28. [28]
    H. Kowalski, L.N. Lipatov, D.A. Ross and O. Schulz, Decoupling of the leading contribution in the discrete BFKL analysis of high-precision HERA data, Eur. Phys. J. C 77 (2017) 777 [arXiv:1707.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Kowalski, L.N. Lipatov and D.A. Ross, The behaviour of the Green function for the BFKL Pomeron with running coupling, Eur. Phys. J. C 76 (2016) 23 [arXiv:1508.05744] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Kowalski, L. Lipatov and D. Ross, The Green function for the BFKL Pomeron and the transition to DGLAP evolution, Eur. Phys. J. C 74 (2014) 2919 [arXiv:1401.6298] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Kirschner and L.n. Lipatov, Doubly logarithmic asymptotic of the quark scattering amplitude with nonvacuum exchange in the T channel, Sov. Phys. JETP 56 (1982) 266 [Zh. Eksp. Teor. Fiz. 83 (1982) 488] [INSPIRE].
  32. [32]
    R. Kirschner and L.N. Lipatov, Double logarithmic asymptotics of quark scattering amplitudes with flavor exchange, Phys. Rev. D 26 (1982) 1202 [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Kirschner and L.n. Lipatov, Double logarithmic asymptotics and Regge singularities of quark amplitudes with flavor exchange, Nucl. Phys. B 213 (1983) 122 [INSPIRE].
  34. [34]
    D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Hentschinski, The high energy behavior of QCD: the effective action and the triple-Pomeron-vertex, Ph.D. thesis, Hamburg U., Hamburg, Germany, (2009) [arXiv:0908.2576] [INSPIRE].
  36. [36]
    M. Siddikov, private communication.Google Scholar
  37. [37]
    J. Bartels, M.A. Braun, D. Colferai and G.P. Vacca, Diffractive η c photoproduction and electroproduction with the perturbative QCD odderon, Eur. Phys. J. C 20 (2001) 323 [hep-ph/0102221] [INSPIRE].
  38. [38]
    J. Bartels, High-energy behavior in a non-Abelian gauge theory (II), Nucl. Phys. B 175 (1980) 365 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Kwiecinski and M. Praszalowicz, Three gluon integral equation and odd c singlet Regge singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].
  41. [41]
    J. Bartels, M. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Jochen Bartels
    • 1
  • Carlos Contreras
    • 2
  • Gian Paolo Vacca
    • 3
    Email author
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Departamento de FisicaUniversidad Tecnica Federico Santa MariaValparaisoChile
  3. 3.INFN Sezione di Bologna, DIFABolognaItaly

Personalised recommendations