Dark tridents at off-axis liquid argon neutrino detectors

  • André de Gouvêa
  • Patrick J. Fox
  • Roni Harnik
  • Kevin J. KellyEmail author
  • Yue Zhang
Open Access
Regular Article - Theoretical Physics


We present dark tridents, a new channel for exploring dark sectors in short-baseline neutrino experiments. Dark tridents are clean, distinct events where, like neutrino tridents, the scattering of a very weakly coupled particle leads to the production of a lepton-antilepton pair. Dark trident production occurs in models where long-lived dark-sector particles are produced along with the neutrinos in a beam-dump environment and interact with neutrino detectors downstream, producing an on-shell boson which decays into a pair of charged leptons. We focus on a simple model where the dark matter particle interacts with the standard model exclusively through a dark photon, and concentrate on the region of parameter space where the dark photon mass is smaller than twice that of the dark matter particle and hence decays exclusively into standard-model particles. We compute event rates and discuss search strategies for dark tridents from dark matter at the current and upcoming liquid argon detectors aligned with the Booster beam at Fermilab — MicroBooNE, SBND, and ICARUS — assuming the dark sector particles are produced off-axis in the higher energy NuMI beam. We find that MicroBooNE has already recorded enough data to be competitive with existing bounds on this dark sector model, and that new regions of parameter space will be probed with future data and experiments.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614].ADSGoogle Scholar
  2. [2]
    R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering New Light States at Neutrino Experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].ADSGoogle Scholar
  3. [3]
    P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].
  4. [4]
    B.A. Dobrescu and C. Frugiuele, GeV-Scale Dark Matter: Production at the Main Injector, JHEP 02 (2015) 019 [arXiv:1410.1566] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Coloma, B.A. Dobrescu, C. Frugiuele and R. Harnik, Dark matter beams at LBNF, JHEP 04 (2016) 047 [arXiv:1512.03852] [INSPIRE].ADSGoogle Scholar
  6. [6]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Dark Matter Search in a Proton Beam Dump with MiniBooNE, Phys. Rev. Lett. 118 (2017) 221803 [arXiv:1702.02688] [INSPIRE].
  7. [7]
    C. Frugiuele, Probing sub-GeV dark sectors via high energy proton beams at LBNF/DUNE and MiniBooNE, Phys. Rev. D 96 (2017) 015029 [arXiv:1701.05464] [INSPIRE].ADSGoogle Scholar
  8. [8]
    E. Izaguirre, Y. Kahn, G. Krnjaic and M. Moschella, Testing Light Dark Matter Coannihilation With Fixed-Target Experiments, Phys. Rev. D 96 (2017) 055007 [arXiv:1703.06881] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Dipole portal to heavy neutral leptons, Phys. Rev. D 98 (2018) 115015 [arXiv:1803.03262] [INSPIRE].ADSGoogle Scholar
  10. [10]
    G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Millicharged particles in neutrino experiments, arXiv:1806.03310 [INSPIRE].
  11. [11]
    P. deNiverville and C. Frugiuele, Hunting sub-GeV dark matter with NOνA near detector, arXiv:1807.06501 [INSPIRE].
  12. [12]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  13. [13]
    APEX collaboration, S. Abrahamyan et al., Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].
  14. [14]
    M. Battaglieri et al., The Heavy Photon Search Test Detector, Nucl. Instrum. Meth. A 777 (2015) 91 [arXiv:1406.6115] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Berlin, S. Gori, P. Schuster and N. Toro, Dark Sectors at the Fermilab SeaQuest Experiment, Phys. Rev. D 98 (2018) 035011 [arXiv:1804.00661] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.L. Feng and J. Kumar, The WIMPless Miracle: Dark-Matter Particles without Weak-Scale Masses or Weak Interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Rocha et al., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E. Bertuzzo, S. Jana, P.A.N. Machado and R. Zukanovich Funchal, Dark Neutrino Portal to Explain MiniBooNE excess, Phys. Rev. Lett. 121 (2018) 241801 [arXiv:1807.09877] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Ballett, S. Pascoli and M. Ross-Lonergan, U(1)′ mediated decays of heavy sterile neutrinos in MiniBooNE, arXiv:1808.02915 [INSPIRE].
  23. [23]
    B. Batell, R. Essig and Z. Surujon, Strong Constraints on Sub-GeV Dark Sectors from SLAC Beam Dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Kahn, G. Krnjaic, J. Thaler and M. Toups, DAEδALUS and dark matter detection, Phys. Rev. D 91 (2015) 055006 [arXiv:1411.1055] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
  26. [26]
    T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z-mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.M. Cline, H. Liu, T. Slatyer and W. Xue, Enabling Forbidden Dark Matter, Phys. Rev. D 96 (2017) 083521 [arXiv:1702.07716] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. 165B (1985) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Essig, T. Volansky and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].ADSGoogle Scholar
  35. [35]
    NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π 0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
  36. [36]
    J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].ADSGoogle Scholar
  37. [37]
    E.M. Riordan et al., A Search for Short Lived Axions in an Electron Beam Dump Experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede and J. Wrbanek, A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e + e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  40. [40]
    G. Krnjaic, private communication.Google Scholar
  41. [41]
  42. [42]
    NOvA collaboration, Fermilab PAC Meeting, (2018),
  43. [43]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.-F. Ge, M. Lindner and W. Rodejohann, Atmospheric Trident Production for Probing New Physics, Phys. Lett. B 772 (2017) 164 [arXiv:1702.02617] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    ArgoNeuT collaboration, R. Acciarri et al., Measurements of Inclusive Muon Neutrino and Antineutrino Charged Current Differential Cross Sections on Argon in the NuMI Antineutrino Beam, Phys. Rev. D 89 (2014) 112003 [arXiv:1404.4809] [INSPIRE].
  47. [47]
    MINERvA collaboration, T. Le et al., Single Neutral Pion Production by Charged-Current \( {\overline{\nu}}_{\mu } \) Interactions on Hydrocarbon atE ν〉 = 3.6 GeV, Phys. Lett. B 749 (2015) 130 [arXiv:1503.02107] [INSPIRE].
  48. [48]
    ArgoNeuT collaboration, R. Acciarri et al., Measurement of ν μ and \( {\overline{\nu}}_{\mu } \) neutral current π 0γγ production in the ArgoNeuT detector, Phys. Rev. D 96 (2017) 012006 [arXiv:1511.00941] [INSPIRE].
  49. [49]
    D. Caratelli, Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber, Ph.D. Thesis, Columbia University, New York U.S.A. (2018).Google Scholar
  50. [50]
  51. [51]
    M. Buschmann, J. Kopp, J. Liu and P.A.N. Machado, Lepton Jets from Radiating Dark Matter, JHEP 07 (2015) 045 [arXiv:1505.07459] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed Inclusive Dark Photon Search at LHCb, Phys. Rev. Lett. 116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, College Park U.S.A. (2017) [arXiv:1707.04591] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A.
  2. 2.Theoretical Physics DepartmentFermilabBataviaU.S.A.

Personalised recommendations