Argyres-Douglas theories, chiral algebras and wild Hitchin characters

Abstract

We use Coulomb branch indices of Argyres-Douglas theories on S1 × L(k, 1) to quantize moduli spaces \( {\mathrm{\mathcal{M}}}_H \) of wild/irregular Hitchin systems. In particular, we obtain formulae for the “wild Hitchin characters” — the graded dimensions of the Hilbert spaces from quantization — for four infinite families of \( {\mathrm{\mathcal{M}}}_H \), giving access to many interesting geometric and topological data of these moduli spaces. We observe that the wild Hitchin characters can always be written as a sum over fixed points in \( {\mathrm{\mathcal{M}}}_H \) under the U(1) Hitchin action, and a limit of them can be identified with matrix elements of the modular transform ST kS in certain two-dimensional chiral algebras. Although naturally fitting into the geometric Langlands program, the appearance of chiral algebras, which was known previously to be associated with Schur operators but not Coulomb branch operators, is somewhat surprising.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Gukov, D. Pei, W. Yan and K. Ye, Equivariant Verlinde algebra from superconformal index and Argyres-Seiberg duality, arXiv:1605.06528 [INSPIRE].

  2. [2]

    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  3. [3]

    D. Gaiotto, \( \mathcal{N} \) = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].

  5. [5]

    M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4-D SYM to 2-D σ-models, Nucl. Phys. B 448 (1995) 166 [hep-th/9501096] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  6. [6]

    J.A. Harvey, G.W. Moore and A. Strominger, Reducing S duality to T duality, Phys. Rev. D 52 (1995) 7161 [hep-th/9501022] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. [7]

    N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  8. [8]

    A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, http://www.math.uchicago.edu/∼mitya/langlands/hitchin/BD-hitchin.pdf (1991).

  9. [9]

    T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality and the Hitchin system, Invent. Math. 153 (2003) 197 [math/0205236] [INSPIRE].

  10. [10]

    A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073 [INSPIRE].

  12. [12]

    N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    S. Gukov and D. Pei, Equivariant Verlinde formula from fivebranes and vortices, Commun. Math. Phys. 355 (2017) 1 [arXiv:1501.01310] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  14. [14]

    J.E. Andersen, S. Gukov and D. Pei, The Verlinde formula for Higgs bundles, arXiv:1608.01761 [INSPIRE].

  15. [15]

    D. Halpern-Leistner, The equivariant Verlinde formula on the moduli of Higgs bundles, arXiv:1608.01754 [INSPIRE].

  16. [16]

    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  17. [17]

    C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP 05 (2015) 020 [arXiv:1408.6522] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  18. [18]

    M. Lemos and W. Peelaers, Chiral Algebras for Trinion Theories, JHEP 02 (2015) 113 [arXiv:1411.3252] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  19. [19]

    C. Cordova and S.-H. Shao, Schur Indices, BPS Particles and Argyres-Douglas Theories, JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  20. [20]

    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  21. [21]

    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New \( \mathcal{N} \) = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  22. [22]

    T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of \( \mathcal{N} \) = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  23. [23]

    G. Bonelli, K. Maruyoshi and A. Tanzini, Wild Quiver Gauge Theories, JHEP 02 (2012) 031 [arXiv:1112.1691] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  24. [24]

    D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  25. [25]

    Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D 94 (2016) 065012 [arXiv:1509.00847] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. [26]

    E. Witten, Gauge theory and wild ramification, arXiv:0710.0631 [INSPIRE].

  27. [27]

    O. Biquard and P. Boalch, Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004) 179 [math/0111098].

  28. [28]

    P. Boalch and D. Yamakawa, Twisted wild character varieties, arXiv:1512.08091.

  29. [29]

    P.P. Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, arXiv:1111.6228.

  30. [30]

    P. Boalch, Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves, arXiv:1203.6607.

  31. [31]

    K. Maruyoshi and J. Song, Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  33. [33]

    P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 Deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, part II: non-principal deformations, JHEP 12 (2016) 103 [arXiv:1610.05311] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  34. [34]

    M. Buican and T. Nishinaka, Argyres-Douglas theories, S 1 reductions and topological symmetries, J. Phys. A 49 (2016) 045401 [arXiv:1505.06205] [INSPIRE].

    MATH  Google Scholar 

  35. [35]

    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d \( \mathcal{N} \) = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  36. [36]

    D. Nanopoulos and D. Xie, Hitchin Equation, Singularity and \( \mathcal{N} \) = 2 Superconformal Field Theories, JHEP 03 (2010) 043 [arXiv:0911.1990] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  37. [37]

    W. Wasow, Asymptotic expansions for ordinary differential equations, Courier Corporation (2002).

  38. [38]

    C.T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Am. Math. Soc. 1 (1988) 867.

    MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    S.K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc. 55 (1987) 127.

    MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    K. Corlette, Flat bundles with canonical metrics, J. Diff. Geom. 28 (1988) 361.

    MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    C. Sabbah, Harmonic metrics and connections with irregular singularities, Ann. Inst. Fourier 49 (1999) 1265 [math/9905039].

  42. [42]

    P. Boalch, Quasi-Hamiltonian geometry of meromorphic connections, math/0203161 [INSPIRE].

  43. [43]

    P. Boalch, Through the analytic halo: Fission via irregular singularities, Ann. Inst. Fourier 59 (2009) 2669 [arXiv:1305.6465] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    N.J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    P.C. Argyres, K. Maruyoshi and Y. Tachikawa, Quantum Higgs branches of isolated \( \mathcal{N} \) = 2 superconformal field theories, JHEP 10 (2012) 054 [arXiv:1206.4700] [INSPIRE].

    Article  ADS  Google Scholar 

  46. [46]

    L. Fredrickson and A. Neitzke, From S 1 -fixed points to \( \mathcal{W} \) -algebra representations, arXiv:1709.06142 [INSPIRE].

  47. [47]

    T. Mochizuki, Wild harmonic bundles and wild pure twistor d-modules, arXiv:0803.1344.

  48. [48]

    A. Alekseev, Notes on equivariant localization, in Geometry and Quantum Physics, Springer (2000), pp. 1-24.

  49. [49]

    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  50. [50]

    D. Gaiotto, N. Seiberg and Y. Tachikawa, Comments on scaling limits of 4d \( \mathcal{N} \) = 2 theories, JHEP 01 (2011) 078 [arXiv:1011.4568] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  51. [51]

    M. Buican, S. Giacomelli, T. Nishinaka and C. Papageorgakis, Argyres-Douglas Theories and S-duality, JHEP 02 (2015) 185 [arXiv:1411.6026] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  52. [52]

    D. Xie and S.-T. Yau, New \( \mathcal{N} \) = 2 dualities, arXiv:1602.03529 [INSPIRE].

  53. [53]

    S. Cecotti and M. Del Zotto, Higher S-dualities and Shephard-Todd groups, JHEP 09 (2015) 035 [arXiv:1507.01799] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    D. Xie and S.-T. Yau, Argyres-Douglas matter and \( \mathcal{N} \) = 2 dualities, arXiv:1701.01123 [INSPIRE].

  55. [55]

    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  56. [56]

    D. Kutasov, A. Parnachev and D.A. Sahakyan, Central charges and U(1)R symmetries in \( \mathcal{N} \) = 1 super Yang-Mills, JHEP 11 (2003) 013 [hep-th/0308071] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  57. [57]

    S.S. Razamat and B. Willett, Global Properties of Supersymmetric Theories and the Lens Space, Commun. Math. Phys. 334 (2015) 661 [arXiv:1307.4381] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  58. [58]

    F. Nieri and S. Pasquetti, Factorisation and holomorphic blocks in 4d, JHEP 11 (2015) 155 [arXiv:1507.00261] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  59. [59]

    F. Benini, T. Nishioka and M. Yamazaki, 4d Index to 3d Index and 2d TQFT, Phys. Rev. D 86 (2012) 065015 [arXiv:1109.0283] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    S.S. Razamat and M. Yamazaki, S-duality and the \( \mathcal{N} \) = 2 Lens Space Index, JHEP 10 (2013) 048 [arXiv:1306.1543] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  61. [61]

    S. Gukov, P. Putrov and C. Vafa, Fivebranes and 3-manifold homology, JHEP 07 (2017) 071 [arXiv:1602.05302] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  62. [62]

    S. Gukov, D. Pei, P. Putrov and C. Vafa, BPS spectra and 3-manifold invariants, arXiv:1701.06567 [INSPIRE].

  63. [63]

    P. Boalch, Irregular connections and Kac-Moody root systems, arXiv:0806.1050.

  64. [64]

    P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs I: physical constraints on relevant deformations, arXiv:1505.04814 [INSPIRE].

  65. [65]

    S. Gukov, Quantization via Mirror Symmetry, arXiv:1011.2218 [INSPIRE].

  66. [66]

    F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063 [arXiv:1007.0992] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  67. [67]

    D. Nanopoulos and D. Xie, More Three Dimensional Mirror Pairs, JHEP 05 (2011) 071 [arXiv:1011.1911] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  68. [68]

    S.S. Razamat and B. Willett, Down the rabbit hole with theories of class S, JHEP 10 (2014) 99 [arXiv:1403.6107] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  69. [69]

    W. Peelaers, Higgs branch localization of \( \mathcal{N} \) = 1 theories on S 3 × S 1, JHEP 08 (2014) 060 [arXiv:1403.2711] [INSPIRE].

    Article  Google Scholar 

  70. [70]

    E. Frenkel, Lectures on the Langlands program and conformal field theory, hep-th/0512172 [INSPIRE].

  71. [71]

    E. Frenkel, Gauge Theory and Langlands Duality, arXiv:0906.2747 [INSPIRE].

  72. [72]

    S. Gukov and E. Witten, Branes and Quantization, Adv. Theor. Math. Phys. 13 (2009) 1445 [arXiv:0809.0305] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  73. [73]

    E. Witten, More On Gauge Theory And Geometric Langlands, arXiv:1506.04293 [INSPIRE].

  74. [74]

    D. Nadler and E. Zaslow, Constructible Sheaves and the Fukaya Category, math/0604379.

  75. [75]

    D. Nadler, Microlocal branes are constructible sheaves, math/0612399.

  76. [76]

    M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys. A 49 (2016) 015401 [arXiv:1505.05884] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  77. [77]

    D. Xie, W. Yan and S.-T. Yau, Chiral algebra of Argyres-Douglas theory from M5 brane, arXiv:1604.02155 [INSPIRE].

  78. [78]

    C. Cordova, D. Gaiotto and S.-H. Shao, Infrared Computations of Defect Schur Indices, JHEP 11 (2016) 106 [arXiv:1606.08429] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  79. [79]

    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals and ’t Hooft anomaly matching conditions, JHEP 06 (2012) 016 [arXiv:1203.5677] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  80. [80]

    S.S. Razamat, On a modular property of N = 2 superconformal theories in four dimensions, JHEP 10 (2012) 191 [arXiv:1208.5056] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  81. [81]

    T. Creutzig, W-algebras for Argyres-Douglas theories, arXiv:1701.05926 [INSPIRE].

  82. [82]

    T. Creutzig, D. Ridout and S. Wood, Coset Constructions of Logarithmic (1, p) Models, Lett. Math. Phys. 104 (2014) 553 [arXiv:1305.2665] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  83. [83]

    V.G. Kac and M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, Adv. Math. 185 (2004) 400 [math-ph/0304011] [INSPIRE].

  84. [84]

    T. Creutzig and T. Gannon, Logarithmic conformal field theory, log-modular tensor categories and modular forms, J. Phys. A 50 (2017) 404004 [arXiv:1605.04630] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  85. [85]

    H. Haahr Andersen and J. Paradowski, Fusion categories arising from semisimple Lie algebras, Commun. Math. Phys. 169 (1995) 563.

    MathSciNet  Article  MATH  ADS  Google Scholar 

  86. [86]

    B. Bakalov and A.A. Kirillov, Lectures on tensor categories and modular functors, vol. 21, American Mathematical Soc. (2001).

  87. [87]

    V.G. Kac and M. Wakimoto, Modular invariant representations of infinite dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. 85 (1988) 4956 [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  88. [88]

    P. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer Science & Business Media (2012).

  89. [89]

    T. Creutzig and D. Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models I, Nucl. Phys. B 865 (2012) 83 [arXiv:1205.6513] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  90. [90]

    T. Creutzig and D. Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models II, Nucl. Phys. B 875 (2013) 423 [arXiv:1306.4388] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  91. [91]

    B. Pareigis, On braiding and dyslexia, J. Algebra 171 (1995) 413.

    MathSciNet  Article  MATH  Google Scholar 

  92. [92]

    C. Dong, Twisted modules for vertex algebras associated with even lattices, J. Algebra 165 (1994) 91.

    MathSciNet  Article  MATH  Google Scholar 

  93. [93]

    T. Creutzig, S. Kanade and R. McRae, Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017 [INSPIRE].

  94. [94]

    J. Auger, T. Creutzig, S. Kanade and M. Rupert, Semisimplification of a Category of Modules for the Logarithmic B p -Algebras, to appear.

  95. [95]

    T. Arakawa and A. Moreau, Joseph ideals and lisse minimal W-algebras, arXiv:1506.00710 [INSPIRE].

  96. [96]

    O. Perse, A note on representations of some affine vertex algebras of type D, arXiv:1205.3003.

  97. [97]

    J.A. Minahan and D. Nemeschansky, An \( \mathcal{N} \) = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].

    Article  MATH  Google Scholar 

  98. [98]

    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E n global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].

    Article  MATH  Google Scholar 

  99. [99]

    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  100. [100]

    L.F. Alday, M. Bullimore and M. Fluder, On S-duality of the Superconformal Index on Lens Spaces and 2d TQFT, JHEP 05 (2013) 122 [arXiv:1301.7486] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  101. [101]

    D. Nanopoulos and D. Xie, Hitchin Equation, Irregular Singularity and \( \mathcal{N} \) = 2 Asymptotical Free Theories, arXiv:1005.1350 [INSPIRE].

  102. [102]

    J. Song, Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT, JHEP 02 (2016) 045 [arXiv:1509.06730] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  103. [103]

    D. Gaiotto, Asymptotically free \( \mathcal{N} \) = 2 theories and irregular conformal blocks, J. Phys. Conf. Ser. 462 (2013) 012014 [arXiv:0908.0307] [INSPIRE].

    Article  Google Scholar 

  104. [104]

    D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  105. [105]

    D. Gaiotto and J. Lamy-Poirier, Irregular Singularities in the H +3 WZW Model, arXiv:1301.5342 [INSPIRE].

  106. [106]

    M. Buican, T. Nishinaka and C. Papageorgakis, Constraints on chiral operators in \( \mathcal{N} \) = 2 SCFTs, JHEP 12 (2014) 095 [arXiv:1407.2835] [INSPIRE].

    Article  ADS  Google Scholar 

  107. [107]

    B.M. McCoy, C.A. Tracy and T.T. Wu, Painlevé Functions of the Third Kind, J. Math. Phys. 18 (1977) 1058 [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  108. [108]

    P.B. Gothen, The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface, Int. J. Math. 5 (1994) 861.

    MathSciNet  Article  MATH  Google Scholar 

  109. [109]

    L. Fredrickson and S. Rayan, Topology of Twisted Wild Hitchin Moduli Spaces from Morse flow, in preparation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ke Ye.

Additional information

ArXiv ePrint: 1701.08782

Primary affiliation: Yau Mathematical Sciences Center, Tsinghua University. (Wenbin Yan)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fredrickson, L., Pei, D., Yan, W. et al. Argyres-Douglas theories, chiral algebras and wild Hitchin characters. J. High Energ. Phys. 2018, 150 (2018). https://doi.org/10.1007/JHEP01(2018)150

Download citation

Keywords

  • Conformal Field Theory
  • Differential and Algebraic Geometry
  • Supersymmetry and Duality