Advertisement

Journal of High Energy Physics

, 2018:141 | Cite as

Numerical analysis of the unintegrated double gluon distribution

  • Edgar Elias
  • Krzysztof Golec-Biernat
  • Anna M. StaśtoEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We present detailed numerical analysis of the unintegrated double gluon distribution which includes the dependence on the transverse momenta of partons. The unintegrated double gluon distribution was obtained following the Kimber-Martin-Ryskin method as a convolution of the perturbative gluon splitting function with the collinear integrated double gluon distribution and the Sudakov form factors. We analyze the dependence on the transverse momenta, longitudinal momentum fractions and hard scales. We find that the unintegrated gluon distribution factorizes into a product of two single unintegrated gluon distributions in the region of small values of x, provided the splitting contribution is included and the momentum sum rule is satisfied.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H1 collaboration, I. Abt et al., Measurement of the proton structure function F 2(x, Q 2) in the low x region at HERA, Nucl. Phys. B 407 (1993) 515 [INSPIRE].
  2. [2]
    ZEUS collaboration, M. Derrick et al., Measurement of the proton structure function F 2 in ep scattering at HERA, Phys. Lett. B 316 (1993) 412 [INSPIRE].
  3. [3]
    H1 collaboration, S. Aid et al., A Measurement and QCD analysis of the proton structure function F 2(x, Q 2) at HERA, Nucl. Phys. B 470 (1996) 3 [hep-ex/9603004] [INSPIRE].
  4. [4]
    ZEUS collaboration, M. Derrick et al., Measurement of the F 2 structure function in deep inelastic e + p scattering using 1994 data from the ZEUS detector at HERA, Z. Phys. C 72 (1996) 399 [hep-ex/9607002] [INSPIRE].
  5. [5]
    Axial Field Spectrometer collaboration, T. Akesson et al., Double parton scattering in pp collisions at \( \sqrt{s}=63 \) GeV, Z. Phys. C 34 (1987) 163 [INSPIRE].
  6. [6]
    CDF collaboration, F. Abe et al., Measurement of double parton scattering in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 79 (1997) 584 [INSPIRE].
  7. [7]
    CDF collaboration, F. Abe et al., Double parton scattering in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 56 (1997) 3811 [INSPIRE].
  8. [8]
    D0 collaboration, V.M. Abazov et al., Double parton interactions in γ + 3 jet events in pp bar collisions \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 81 (2010) 052012 [arXiv:0912.5104] [INSPIRE].
  9. [9]
    ATLAS collaboration, Measurement of hard double-parton interactions in W (→ ) + 2 jet events at \( \sqrt{s}=7 \) TeV with the ATLAS detector, New J. Phys. 15 (2013) 033038 [arXiv:1301.6872] [INSPIRE].
  10. [10]
    CMS collaboration, Study of double parton scattering using W + 2-jet events in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2014) 032 [arXiv:1312.5729] [INSPIRE].
  11. [11]
    ATLAS collaboration, Measurement of the production cross section of prompt J/ψ mesons in association with a W ± boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2014) 172 [arXiv:1401.2831] [INSPIRE].
  12. [12]
    N. Paver and D. Treleani, Multi-quark scattering and large p T jet production in hadronic collisions, Nuovo Cim. A 70 (1982) 215 [INSPIRE].
  13. [13]
    M. Diehl, D. Ostermeier and A. Schafer, Elements of a theory for multiparton interactions in QCD, JHEP 03 (2012) 089 [Erratum ibid. 03 (2016) 001] [arXiv:1111.0910] [INSPIRE].
  14. [14]
    D. Treleani and G. Calucci, Multiple parton interactions, inclusive and exclusive cross sections, sum rules, arXiv:1707.00271 [INSPIRE].
  15. [15]
    M. Diehl and J.R. Gaunt, Double parton scattering theory overview, arXiv:1710.04408 [INSPIRE].
  16. [16]
    V.P. Shelest, A.M. Snigirev and G.M. Zinovev, The multiparton distribution equations in QCD, Phys. Lett. 113B (1982) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G.M. Zinovev, A.M. Snigirev and V.P. Shelest, Equations for many parton distributions in quantum chromodynamics, Theor. Math. Phys. 51 (1982) 523 [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    R.K. Ellis, W. Furmanski and R. Petronzio, Unraveling higher twists, Nucl. Phys. B 212 (1983) 29 [INSPIRE].ADSGoogle Scholar
  19. [19]
    A.P. Bukhvostov, G.V. Frolov, L.N. Lipatov and E.A. Kuraev, Evolution equations for quasi-partonic operators, Nucl. Phys. B 258 (1985) 601 [INSPIRE].
  20. [20]
    A.M. Snigirev, Double parton distributions in the leading logarithm approximation of perturbative QCD, Phys. Rev. D 68 (2003) 114012 [hep-ph/0304172] [INSPIRE].
  21. [21]
    V.L. Korotkikh and A.M. Snigirev, Double parton correlations versus factorized distributions, Phys. Lett. B 594 (2004) 171 [hep-ph/0404155] [INSPIRE].
  22. [22]
    J.R. Gaunt and W.J. Stirling, Double parton distributions incorporating perturbative QCD evolution and momentum and quark number sum rules, JHEP 03 (2010) 005 [arXiv:0910.4347] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, The four jet production at LHC and Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] [INSPIRE].
  24. [24]
    F.A. Ceccopieri, An update on the evolution of double parton distributions, Phys. Lett. B 697 (2011) 482 [arXiv:1011.6586] [INSPIRE].
  25. [25]
    M. Diehl and A. Schafer, Theoretical considerations on multiparton interactions in QCD, Phys. Lett. B 698 (2011) 389 [arXiv:1102.3081] [INSPIRE].
  26. [26]
    J.R. Gaunt and W.J. Stirling, Double parton scattering singularity in one-loop integrals, JHEP 06 (2011) 048 [arXiv:1103.1888] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    M.G. Ryskin and A.M. Snigirev, A fresh look at double parton scattering, Phys. Rev. D 83 (2011) 114047 [arXiv:1103.3495] [INSPIRE].
  28. [28]
    J. Bartels and M.G. Ryskin, Recombination within multi-chain contributions in pp scattering, arXiv:1105.1638 [INSPIRE].
  29. [29]
    B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, pQCD physics of multiparton interactions, Eur. Phys. J. C 72 (2012) 1963 [arXiv:1106.5533] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Luszczak, R. Maciula and A. Szczurek, Production of two \( c\overline{c} \) pairs in double-parton scattering, Phys. Rev. D 85 (2012) 094034 [arXiv:1111.3255] [INSPIRE].
  31. [31]
    A.V. Manohar and W.J. Waalewijn, A QCD analysis of double parton scattering: color correlations, interference effects and evolution, Phys. Rev. D 85 (2012) 114009 [arXiv:1202.3794] [INSPIRE].
  32. [32]
    M.G. Ryskin and A.M. Snigirev, Double parton scattering in double logarithm approximation of perturbative QCD, Phys. Rev. D 86 (2012) 014018 [arXiv:1203.2330] [INSPIRE].
  33. [33]
    J.R. Gaunt, Single perturbative splitting diagrams in double parton scattering, JHEP 01 (2013) 042 [arXiv:1207.0480] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, Perturbative QCD correlations in multi-parton collisions, Eur. Phys. J. C 74 (2014) 2926 [arXiv:1306.3763] [INSPIRE].
  35. [35]
    A. van Hameren, R. Maciula and A. Szczurek, Single-parton scattering versus double-parton scattering in the production of two \( c\overline{c} \) pairs and charmed meson correlations at the LHC, Phys. Rev. D 89 (2014) 094019 [arXiv:1402.6972] [INSPIRE].
  36. [36]
    R. Maciula and A. Szczurek, Double-parton scattering contribution to production of jet pairs with large rapidity separation at the LHC, Phys. Rev. D 90 (2014) 014022 [arXiv:1403.2595] [INSPIRE].
  37. [37]
    A.M. Snigirev, N.A. Snigireva and G.M. Zinovjev, Perturbative and nonperturbative correlations in double parton distributions, Phys. Rev. D 90 (2014) 014015 [arXiv:1403.6947] [INSPIRE].
  38. [38]
    K. Golec-Biernat and E. Lewandowska, Electroweak boson production in double parton scattering, Phys. Rev. D 90 (2014) 094032 [arXiv:1407.4038] [INSPIRE].
  39. [39]
    J.R. Gaunt, R. Maciula and A. Szczurek, Conventional versus single-ladder-splitting contributions to double parton scattering production of two quarkonia, two Higgs bosons and \( c\overline{c}c\overline{c} \), Phys. Rev. D 90 (2014) 054017 [arXiv:1407.5821] [INSPIRE].
  40. [40]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, Exclusive production of double J/Ψ mesons in hadronic collisions, J. Phys. G 42 (2015) 055001 [arXiv:1409.4785] [INSPIRE].
  41. [41]
    B. Blok and M. Strikman, Double parton interactions in γp, γA collisions in the direct photon kinematics, Eur. Phys. J. C 74 (2014) 3214 [arXiv:1410.5064] [INSPIRE].
  42. [42]
    R. Maciula and A. Szczurek, Searching for and exploring double-parton scattering effects in four-jet production at the LHC, Phys. Lett. B 749 (2015) 57 [arXiv:1503.08022] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Kirschner, Generalized Lipatov-Altarelli-Parisi equations and jet calculus rules, Phys. Lett. 84B (1979) 266 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Konishi, A. Ukawa and G. Veneziano, A simple algorithm for QCD jets, Phys. Lett. 78B (1978) 243 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    K. Konishi, A. Ukawa and G. Veneziano, Jet calculus: a simple algorithm for resolving QCD jets, Nucl. Phys. B 157 (1979) 45 [INSPIRE].
  46. [46]
    M. Diehl, J.R. Gaunt and K. Schönwald, Double hard scattering without double counting, JHEP 06 (2017) 083 [arXiv:1702.06486] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Collins and H. Jung, Need for fully unintegrated parton densities, in the proceedings of HERA and the LHC: A Workshop on the implications of HERA for LHC physics, June 14-18, East Lansing, U.S.A. (2014), hep-ph/0508280 [INSPIRE].
  48. [48]
    J.C. Collins, T.C. Rogers and A.M. Stasto, Fully unintegrated parton correlation functions and factorization in lowest-order hard scattering, Phys. Rev. D 77 (2008) 085009 [arXiv:0708.2833] [INSPIRE].
  49. [49]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  50. [50]
    J. Collins, New definition of TMD parton densities, Int. J. Mod. Phys. Conf. Ser. 4 (2011) 85 [arXiv:1107.4123] [INSPIRE].
  51. [51]
    S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].
  52. [52]
    M.G.A. Buffing, M. Diehl and T. Kasemets, Double parton scattering for perturbative transverse momenta, PoS QCDEV2016 (2017) 015 [arXiv:1611.00178] [INSPIRE].
  53. [53]
    M.G.A. Buffing, M. Diehl and T. Kasemets, Transverse momentum in double parton scattering: factorisation, evolution and matching, JHEP 01 (2018) 044 [arXiv:1708.03528] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    K. Golec-Biernat and A.M. Stasto, Unintegrated double parton distributions, Phys. Rev. D 95 (2017) 034033 [arXiv:1611.02033] [INSPIRE].
  55. [55]
    M.A. Kimber, A.D. Martin and M.G. Ryskin, Unintegrated parton distributions and prompt photon hadroproduction, Eur. Phys. J. C 12 (2000) 655 [hep-ph/9911379] [INSPIRE].
  56. [56]
    M.A. Kimber, A.D. Martin and M.G. Ryskin, Unintegrated parton distributions, Phys. Rev. D 63 (2001) 114027 [hep-ph/0101348] [INSPIRE].
  57. [57]
    M.A. Kimber, J. Kwiecinski, A.D. Martin and A.M. Stasto, The Unintegrated gluon distribution from the CCFM equation, Phys. Rev. D 62 (2000) 094006 [hep-ph/0006184] [INSPIRE].
  58. [58]
    B. Blok and M. Strikman, Multiparton pp and pA collisions — from geometry to parton-parton correlations, arXiv:1709.00334 [INSPIRE].
  59. [59]
    M. Strikman, Transverse nucleon structure and multiparton interactions, Acta Phys. Polon. B 42 (2011) 2607 [arXiv:1112.3834] [INSPIRE].
  60. [60]
    T.C. Rogers and M. Strikman, Multiple hard partonic collisions with correlations in proton-proton scattering, Phys. Rev. D 81 (2010) 016013 [arXiv:0908.0251] [INSPIRE].
  61. [61]
    T.C. Rogers, A.M. Stasto and M.I. Strikman, Unitarity constraints on semi-hard jet production in impact parameter space, Phys. Rev. D 77 (2008) 114009 [arXiv:0801.0303] [INSPIRE].
  62. [62]
    W. Broniowski and E. Ruiz Arriola, Valence double parton distributions of the nucleon in a simple model, Few Body Syst. 55 (2014) 381 [arXiv:1310.8419] [INSPIRE].
  63. [63]
    K. Golec-Biernat and E. Lewandowska, How to impose initial conditions for QCD evolution of double parton distributions?, Phys. Rev. D 90 (2014) 014032 [arXiv:1402.4079] [INSPIRE].
  64. [64]
    K. Golec-Biernat, E. Lewandowska, M. Serino, Z. Snyder and A.M. Stasto, Constraining the double gluon distribution by the single gluon distribution, Phys. Lett. B 750 (2015) 559 [arXiv:1507.08583] [INSPIRE].
  65. [65]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
  66. [66]
    M. Ciafaloni, Coherence effects in initial jets at small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [INSPIRE].
  67. [67]
    S. Catani, F. Fiorani and G. Marchesini, Small x behavior of initial state radiation in perturbative QCD, Nucl. Phys. B 336 (1990) 18 [INSPIRE].
  68. [68]
    S. Catani, F. Fiorani and G. Marchesini, QCD coherence in initial state radiation, Phys. Lett. B 234 (1990) 339 [INSPIRE].
  69. [69]
    G. Marchesini, QCD coherence in the structure function and associated distributions at small x, Nucl. Phys. B 445 (1995) 49 [hep-ph/9412327] [INSPIRE].

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Edgar Elias
    • 1
  • Krzysztof Golec-Biernat
    • 2
    • 3
  • Anna M. Staśto
    • 1
    Email author
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkU.S.A.
  2. 2.Institute of Nuclear Physics, Polish Academy of SciencesCracowPoland
  3. 3.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations