Skip to main content

A symmetry breaking scenario for QCD3

A preprint version of the article is available at arXiv.

Abstract

We consider the dynamics of 2+1 dimensional SU(N) gauge theory with Chern-Simons level k and N f fundamental fermions. By requiring consistency with previously suggested dualities for N f ≤ 2k as well as the dynamics at k = 0 we propose that the theory with N f > 2k breaks the U(N f ) global symmetry spontaneously to U(N f /2 + k) × U(N f /2 − k). In contrast to the 3+1 dimensional case, the symmetry breaking takes place in a range of quark masses and not just at one point. The target space never becomes parametrically large and the Nambu-Goldstone bosons are therefore not visible semi-classically. Such symmetry breaking is argued to take place in some intermediate range of the number of flavors, 2k < N f < N(N, k), with the upper limit N obeying various constraints. The Lagrangian for the Nambu-Goldstone bosons has to be supplemented by nontrivial Wess-Zumino terms that are necessary for the consistency of the picture, even at k = 0. Furthermore, we suggest two scalar dual theories in this range of N f . A similar picture is developed for SO(N) and Sp(N) gauge theories. It sheds new light on monopole condensation and confinement in the SO(N) & Spin(N) theories.

References

  1. [1]

    N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].

  2. [2]

    N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].

  3. [3]

    P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-Matter theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  4. [4]

    O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-Matter dualities with SO and U Sp gauge groups, JHEP 02 (2017) 072 [arXiv:1611.07874] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  5. [5]

    A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].

  6. [6]

    E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].

  7. [7]

    C. Closset et al., Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  8. [8]

    C. Closset et al., Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  9. [9]

    K. Intriligator and N. Seiberg, Aspects of 3D N = 2 Chern-Simons-Matter theories, JHEP 07 (2013) 079 [arXiv:1305.1633] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  10. [10]

    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-Matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  11. [11]

    A. Karch and D. Tong, Particle-vortex duality from 3D bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].

  12. [12]

    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  13. [13]

    D. Radicevic, D. Tong and C. Turner, Non-abelian 3D bosonization and quantum Hall states, JHEP 12 (2016) 067 [arXiv:1608.04732] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  14. [14]

    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and mirror symmetry, Phys. Rev. D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].

  15. [15]

    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett. 118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  16. [16]

    A. Karch, B. Robinson and D. Tong, More abelian dualities in 2 + 1 dimensions, JHEP 01 (2017) 017 [arXiv:1609.04012] [INSPIRE].

  17. [17]

    M.A. Metlitski, A. Vishwanath and C. Xu, Duality and bosonization of (2 + 1)-dimensional Majorana fermions, Phys. Rev. B 95 (2017) 205137 [arXiv:1611.05049] [INSPIRE].

  18. [18]

    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].

  19. [19]

    M.E. Peskin, Mandelstam ’t Hooft duality in abelian lattice models, Annals Phys. 113 (1978) 122 [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    C. Dasgupta and B.I. Halperin, Phase transition in a lattice model of superconductivity, Phys. Rev. Lett. 47 (1981) 1556 [INSPIRE].

    Article  ADS  Google Scholar 

  21. [21]

    M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and superfluid states, Phys. Rev. B 89 (2014) 235116 [arXiv:1201.4393] [INSPIRE].

  22. [22]

    D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev. X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].

  23. [23]

    A.C. Potter, M. Serbyn and A. Vishwanath, Thermoelectric transport signatures of Dirac composite fermions in the half-filled Landau level, Phys. Rev. X 6 (2016) 031026 [arXiv:1512.06852] [INSPIRE].

  24. [24]

    C. Wang and T. Senthil, Composite Fermi liquids in the lowest Landau level, Phys. Rev. B 94 (2016) 245107 [arXiv:1604.06807] [INSPIRE].

  25. [25]

    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  26. [26]

    J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

  27. [27]

    O. Aharony et al., Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

  28. [28]

    O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N c ) and U(N c ) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].

  29. [29]

    A. Giveon and D. Kutasov, Seiberg duality in Chern-Simons theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].

  30. [30]

    A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, arXiv:1104.0466 [INSPIRE].

  31. [31]

    B. Willett and I. Yaakov, N = 2 dualities and Z extremization in three dimensions, arXiv:1104.0487 [INSPIRE].

  32. [32]

    F. Benini, C. Closset and S. Cremonesi, Comments on 3D Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].

  33. [33]

    O. Aharony and I. Shamir, On O(N c ) D = 3 N = 2 supersymmetric QCD theories, JHEP 12 (2011) 043 [arXiv:1109.5081] [INSPIRE].

  34. [34]

    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3D dualities from 4D dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

  35. [35]

    J. Park and K.-J. Park, Seiberg-like dualities for 3D N = 2 theories with SU(N) gauge group, JHEP 10 (2013) 198 [arXiv:1305.6280] [INSPIRE].

  36. [36]

    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP 08 (2013) 099 [arXiv:1307.0511] [INSPIRE].

  37. [37]

    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  38. [38]

    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

  39. [39]

    S. Giombi and X. Yin, On higher spin gauge theory and the critical O(N) model, Phys. Rev. D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].

  40. [40]

    O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

  41. [41]

    S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

  42. [42]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

  43. [43]

    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N Chern-Simons-Matter theories and bosonization in three dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  44. [44]

    S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

  45. [45]

    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The thermal free energy in large-N Chern-Simons-Matter theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].

    Article  ADS  Google Scholar 

  46. [46]

    S. Jain et al., Phases of large-N vector Chern-Simons theories on S 2 × S 1, JHEP 09 (2013) 009 [arXiv:1301.6169] [INSPIRE].

  47. [47]

    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].

    Article  ADS  Google Scholar 

  48. [48]

    S. Jain et al., Unitarity, crossing symmetry and duality of the S-matrix in large-N Chern-Simons theories with fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].

    Article  ADS  Google Scholar 

  49. [49]

    K. Inbasekar et al., Unitarity, crossing symmetry and duality in the scattering of \( \mathcal{N}=1 \) SUSY matter Chern-Simons theories, JHEP 10 (2015) 176 [arXiv:1505.06571] [INSPIRE].

  50. [50]

    S. Minwalla and S. Yokoyama, Chern-Simons bosonization along RG flows, JHEP 02 (2016) 103 [arXiv:1507.04546] [INSPIRE].

    Article  ADS  Google Scholar 

  51. [51]

    G. Gur-Ari, S.A. Hartnoll and R. Mahajan, Transport in Chern-Simons-Matter theories, JHEP 07 (2016) 090 [arXiv:1605.01122] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  52. [52]

    T. Appelquist and D. Nash, Critical behavior in (2 + 1)-dimensional QCD, Phys. Rev. Lett. 64 (1990) 721 [INSPIRE].

    Article  ADS  Google Scholar 

  53. [53]

    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, arXiv:1708.06806 [INSPIRE].

  54. [54]

    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  55. [55]

    Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on abelian Higgs models and persistent order, arXiv:1705.04786 [INSPIRE].

  56. [56]

    C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].

  57. [57]

    C. Vafa and E. Witten, Eigenvalue inequalities for fermions in gauge theories, Commun. Math. Phys. 95 (1984) 257 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  58. [58]

    C. Vafa and E. Witten, Parity conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [INSPIRE].

    Article  ADS  Google Scholar 

  59. [59]

    D.K. Hong and H.-U. Yee, Holographic aspects of three dimensional QCD from string theory, JHEP 05 (2010) 036 [Erratum ibid. 08 (2010) 120] [arXiv:1003.1306] [INSPIRE].

  60. [60]

    D. Radicevic, Disorder operators in Chern-Simons-fermion theories, JHEP 03 (2016) 131 [arXiv:1511.01902] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  61. [61]

    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

  62. [62]

    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].

  63. [63]

    D.S. Freed, Z. Komargodski and N. Seiberg, The sum over topological sectors and θ in the 2+1-dimensional ℂ1 σ-model, arXiv:1707.05448 [INSPIRE].

  64. [64]

    F. Wilczek and A. Zee, Linking numbers, spin and statistics of solitons, Phys. Rev. Lett. 51 (1983) 2250 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  65. [65]

    D.S. Freed, Pions and generalized cohomology, J. Diff. Geom. 80 (2008) 45 [hep-th/0607134] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  66. [66]

    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].

    Article  ADS  Google Scholar 

  67. [67]

    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  68. [68]

    C. Cordova, P.-S. Hsin and N. Seiberg, Global symmetries, counterterms and duality in Chern-Simons matter theories with orthogonal gauge groups, arXiv:1711.10008 [INSPIRE].

  69. [69]

    O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  70. [70]

    Z. Komargodski, T. Sulejmanpasic and M. Unsal, Walls, anomalies and (de)confinement in quantum anti-ferromagnets, arXiv:1706.05731 [INSPIRE].

  71. [71]

    C. Xu and Y.-Z. You, Self-dual quantum electrodynamics as boundary state of the three dimensional bosonic topological insulator, Phys. Rev. B 92 (2015) 220416 [arXiv:1510.06032] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zohar Komargodski.

Additional information

ArXiv ePrint: 1706.08755

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komargodski, Z., Seiberg, N. A symmetry breaking scenario for QCD3. J. High Energ. Phys. 2018, 109 (2018). https://doi.org/10.1007/JHEP01(2018)109

Download citation

Keywords

  • Chern-Simons Theories
  • Duality in Gauge Field Theories
  • Global Symmetries
  • Anomalies in Field and String Theories