NLO QCD+EW corrections to diphoton production in association with a vector boson

  • Nicolas Greiner
  • Marek Schönherr
Open Access
Regular Article - Theoretical Physics


Processes with three external electroweak gauge boson allow for a measurement of triple and quartic gauge couplings. They can be used to constrain anomalous gauge couplings, where new physics might predominantly couple to electroweak gauge bosons. In this paper we chose a class of such processes where we consider two photons and an additional vector boson in the final state. As additional vector boson we consider either a third photon or a W or Z boson. For the latter two cases we assume a leptonic decay of the boson. We calculate the next-to-leading order QCD and electroweak corrections to these processes with a particular emphasis on the until now unknown electroweak corrections. We find that the electroweak corrections to the total cross section are moderate in the range of a few per cent at most, but can reach several tens of per cent in regions of phase space that are particularly interesting in the context of new physics searches. In addition we investigate the difference between additive and multiplicative scheme when combining QCD and electroweak corrections and we assess the importance of photon induced contributions to these processes.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    S. Weinberg, Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions, Rev. Mod. Phys. 52 (1980) 515 [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Measurements of Zγ and Zγγ production in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 112002 [arXiv:1604.05232] [INSPIRE].
  4. [4]
    CMS collaboration, Measurements of the ppW γγ and ppZγγ cross sections and limits on anomalous quartic gauge couplings at \( \sqrt{s}=8 \) TeV, JHEP 10 (2017) 072 [arXiv:1704.00366] [INSPIRE].
  5. [5]
    ATLAS collaboration, Evidence of W γγ Production in pp Collisions at \( \sqrt{s}=8 \) TeV and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector, Phys. Rev. Lett. 115 (2015) 031802 [arXiv:1503.03243] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 210 [arXiv:1509.05051] [INSPIRE].
  7. [7]
    G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, Zγγ production with leptonic decays and triple photon production at next-to-leading order QCD, Phys. Rev. D 84 (2011) 074028 [arXiv:1107.3149] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.M. Campbell, H.B. Hartanto and C. Williams, Next-to-leading order predictions for Zγ+jet and Z γγ final states at the LHC, JHEP 11 (2012) 162 [arXiv:1208.0566] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, W +− γγ production with leptonic decays at NLO QCD, Phys. Rev. D 83 (2011) 114035 [arXiv:1103.4613] [INSPIRE].Google Scholar
  10. [10]
    G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    G. Cullen et al., GoSam -2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  12. [12]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  13. [13]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.MathSciNetCrossRefzbMATHADSGoogle Scholar
  14. [14]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  15. [15]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  16. [16]
    G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  17. [17]
    T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  18. [18]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  19. [19]
    H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  21. [21]
    P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  24. [24]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  25. [25]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  26. [26]
    G. Cullen et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [27]
    J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828 [arXiv:1312.3887] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  28. [28]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  29. [29]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].
  30. [30]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  31. [31]
    S. Dittmaier, A General approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  32. [32]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Kallweit, J.M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for 22ν diboson signatures at the LHC, JHEP 11 (2017) 120 [arXiv:1705.00598] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    M. Schönherr, An automated subtraction of NLO EW infrared divergences, arXiv:1712.07975 [INSPIRE].
  37. [37]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  38. [38]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  39. [39]
    T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ + jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    S. Höche, J. Huang, G. Luisoni, M. Schönherr and J. Winter, Zero and one jet combined next-to-leading order analysis of the top quark forward-backward asymmetry, Phys. Rev. D 88 (2013) 014040 [arXiv:1306.2703] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Heinrich, A. Maier, R. Nisius, J. Schlenk and J. Winter, NLO QCD corrections to \( {W}^{+}{W}^{-}b\overline{b} \) production with leptonic decays in the light of top quark mass and asymmetry measurements, JHEP 06 (2014) 158 [arXiv:1312.6659] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    N. Greiner, S. Höche, G. Luisoni, M. Schönherr, J.-C. Winter and V. Yundin, Phenomenological analysis of Higgs boson production through gluon fusion in association with jets, JHEP 01 (2016) 169 [arXiv:1506.01016] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    N. Greiner, S. Höche, G. Luisoni, M. Schönherr and J.-C. Winter, Full mass dependence in Higgs boson production in association with jets at the LHC and FCC, JHEP 01 (2017) 091 [arXiv:1608.01195] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    G. Heinrich et al., NLO and off-shell effects in top quark mass determinations, arXiv:1709.08615 [INSPIRE].
  45. [45]
    D. Fäh and N. Greiner, Diphoton production in association with two bottom jets, Eur. Phys. J. C 77 (2017) 750 [arXiv:1706.08309] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    M. Chiesa, N. Greiner, M. Schönherr and F. Tramontano, Electroweak corrections to diphoton plus jets, JHEP 10 (2017) 181 [arXiv:1706.09022] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  48. [48]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    C.F. Berger et al., Next-to-Leading Order QCD Predictions for W + 3-Jet Distributions at Hadron Colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
  52. [52]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to Z+γ production with leptonic Z-boson decays,JHEP 02(2016)057 [arXiv:1510.08742] [INSPIRE].
  55. [55]
    A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to W + γ production with leptonic W-boson decays, JHEP 04 (2015) 018 [arXiv:1412.7421] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Physik InstitutUniversität ZürichZürichSwitzerland
  2. 2.Theoretical Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations