Advertisement

Wrapping rules (in) string theory

  • Eric A. Bergshoeff
  • Fabio Riccioni
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we show that the number of all 1/2-BPS branes in string theory compactified on a torus can be derived by universal wrapping rules whose formulation we present. These rules even apply to branes in less than ten dimensions whose ten-dimensional origin is an exotic brane. In that case the wrapping rules contain an additional combinatorial factor that is related to the highest dimension in which the ten-dimensional exotic brane, after compactification, can be realized as a standard brane. We show that the wrapping rules also apply to cases with less supersymmetry. As a specific example, we discuss the compactification of IIA/IIB string theory on (T4/2) × T n .

Keywords

String Duality p-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. Polchinski, String theory. Volume 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  4. [4]
    J. Polchinski, String theory. Volume 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  5. [5]
    K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  6. [6]
    A. Kleinschmidt, I. Schnakenburg and P.C. West, Very extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E.A. Bergshoeff, J. Hartong, P.S. Howe, T. Ortín and F. Riccioni, IIA/IIB Supergravity and Ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    E.A. Bergshoeff and F. Riccioni, D-Brane Wess-Zumino Terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E.A. Bergshoeff and F. Riccioni, The D-brane U-scan, Proc. Symp. Pure Math. 85 (2012) 313 [arXiv:1109.1725] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    E.A. Bergshoeff, F. Riccioni and L. Romano, Branes, Weights and Central Charges, JHEP 06 (2013) 019 [arXiv:1303.0221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect Branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].
  24. [24]
    S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, Algebraic aspects of matrix theory on T d, Nucl. Phys. B 509 (1998) 122 [hep-th/9707217] [INSPIRE].
  25. [25]
    N.A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].
  27. [27]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D.M. Lombardo, F. Riccioni and S. Risoli, P fluxes and exotic branes, JHEP 12 (2016) 114 [arXiv:1610.07975] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    G. Pradisi and F. Riccioni, Non-geometric orbifolds and wrapping rules, JHEP 09 (2014) 170 [arXiv:1407.5576] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP 01 (2013) 005 [arXiv:1210.1422] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    E.A. Bergshoeff, C. Condeescu, G. Pradisi and F. Riccioni, Heterotic-Type II duality and wrapping rules, JHEP 12 (2013) 057 [arXiv:1311.3578] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E.A. Bergshoeff, F. Riccioni and L. Romano, Towards a classification of branes in theories with eight supercharges, JHEP 05 (2014) 070 [arXiv:1402.2557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual Double Field Theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    C.M. Hull, Strongly coupled gravity and duality, Nucl. Phys. B 583 (2000) 237 [hep-th/0004195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A No go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].
  41. [41]
    X. Bekaert, N. Boulanger and S. Cnockaert, No self-interaction for two-column massless fields, J. Math. Phys. 46 (2005) 012303 [hep-th/0407102] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.INFN Sezione di Roma, Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations