Advertisement

Toward microstate counting beyond large N in localization and the dual one-loop quantum supergravity

  • James T. LiuEmail author
  • Leopoldo A. Pando Zayas
  • Vimal Rathee
  • Wenli Zhao
Open Access
Regular Article - Theoretical Physics

Abstract

The topologically twisted index for ABJM theory with gauge group U(N) k × U(N)k has recently been shown, in the large-N limit, to reproduce the BekensteinHawking entropy of certain magnetically charged asymptotically AdS4 black holes. We numerically study the index beyond the large-N limit and provide evidence that it contains a subleading logarithmic term of the form −1/2 log N. On the holographic side, this term naturally arises from a one-loop computation. However, we find that the contribution coming from the near horizon states does not reproduce the field theory answer. We give some possible reasons for this apparent discrepancy.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  2. [2]
    S. Banerjee, R.K. Gupta and A. Sen, Logarithmic corrections to extremal black hole entropy from quantum entropy function, JHEP 03 (2011) 147 [arXiv:1005.3044] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  3. [3]
    S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic corrections to N = 4 and N = 8 black hole entropy: a one loop test of quantum gravity, JHEP 11 (2011) 143 [arXiv:1106.0080] [INSPIRE].
  4. [4]
    A. Sen, Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, Gen. Rel. Grav. 44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].
  5. [5]
    A. Sen, Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  6. [6]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  8. [8]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS 4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  9. [9]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  10. [10]
    M. Honda and Y. Yoshida, Supersymmetric index on T 2 × S 2 and elliptic genus, arXiv:1504.04355 [INSPIRE].
  11. [11]
    C. Closset, S. Cremonesi and D.S. Park, The equivariant A-twist and gauged linear σ-models on the two-sphere, JHEP 06 (2015) 076 [arXiv:1504.06308] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. [12]
    S.M. Hosseini and A. Zaffaroni, Large-N matrix models for 3d \( \mathcal{N}=2 \) theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].
  13. [13]
    S.M. Hosseini and N. Mekareeya, Large-N topologically twisted index: necklace quivers, dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  14. [14]
    C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories, JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  15. [15]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4 hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023 [arXiv:1701.07893] [INSPIRE].
  16. [16]
    C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. [17]
    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A One-Loop Test of Quantum Supergravity, Class. Quant. Grav. 31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].
  18. [18]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  19. [19]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  20. [20]
    A. Sen, Quantum entropy function from AdS 2 /CF T 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
  21. [21]
    D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  22. [22]
    R. Camporesi and A. Higuchi, The plancherel measure for p-forms in real hyperbolic spaces, J. Geom. Phys. 15 (1994) 57.MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. [23]
    W. Siegel, Hidden Ghosts, Phys. Lett. B 93 (1980) 170 [INSPIRE].
  24. [24]
    E.J. Copeland and D.J. Toms, Quantized Antisymmetric Tensor Fields and Selfconsistent Dimensional Reduction in Higher Dimensional Space-times, Nucl. Phys. B 255 (1985) 201 [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    F. Larsen and P. Lisbao, Divergences and boundary modes in \( \mathcal{N}=8 \) supergravity, JHEP 01 (2016) 024 [arXiv:1508.03413] [INSPIRE].
  26. [26]
    J. Dodziuk, l 2 harmonic forms on rotationally symmetric riemannian manifolds, Proc. Am. Math. Soc. 77 (1979) 395.zbMATHGoogle Scholar
  27. [27]
    H. Donnelly, The differential form spectrum of hyperbolic space, Manuscripta Math. 33 (1981) 365.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Sen, Entropy function and AdS 2 /CF T 1 correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  30. [30]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].
  31. [31]
    A. Dabholkar, N. Drukker and J. Gomes, Localization in supergravity and quantum AdS 4 /CF T 3 holography, JHEP 10 (2014) 90 [arXiv:1406.0505] [INSPIRE].
  32. [32]
    J. Nian and X. Zhang, Entanglement entropy of ABJM theory and entropy of topological black hole, JHEP 07 (2017) 096 [arXiv:1705.01896] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  33. [33]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  34. [34]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  35. [35]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5, JHEP 04 (2017) 014 [arXiv:1611.09374] [INSPIRE].
  36. [36]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].CrossRefzbMATHADSGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Michigan Center for Theoretical Physics, Randall Laboratory of PhysicsUniversity of MichiganAnn ArborU.S.A.
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations