Journal of High Energy Physics

, 2017:142

SUSY meets her twin

  • Andrey Katz
  • Alberto Mariotti
  • Stefan Pokorski
  • Diego Redigolo
  • Robert Ziegler
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  2. [2]
    G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [INSPIRE].
  3. [3]
    P. Batra and Z. Chacko, A Composite Twin Higgs Model, Phys. Rev. D 79 (2009) 095012 [arXiv:0811.0394] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Geller and O. Telem, Holographic Twin Higgs Model, Phys. Rev. Lett. 114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP 08 (2015) 161 [arXiv:1501.07803] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev. D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].ADSGoogle Scholar
  7. [7]
    N. Craig, S. Knapen and P. Longhi, The Orbifold Higgs, JHEP 03 (2015) 106 [arXiv:1411.7393] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Craig, S. Knapen and P. Longhi, Neutral Naturalness from Orbifold Higgs Models, Phys. Rev. Lett. 114 (2015) 061803 [arXiv:1410.6808] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Craig, S. Knapen, P. Longhi and M. Strassler, The Vector-like Twin Higgs, JHEP 07 (2016) 002 [arXiv:1601.07181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
  11. [11]
    A. Birkedal, Z. Chacko and M.K. Gaillard, Little supersymmetry and the supersymmetric little hierarchy problem, JHEP 10 (2004) 036 [hep-ph/0404197] [INSPIRE].
  12. [12]
    P.H. Chankowski, A. Falkowski, S. Pokorski and J. Wagner, Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners, Phys. Lett. B 598 (2004) 252 [hep-ph/0407242] [INSPIRE].
  13. [13]
    Z. Berezhiani, P.H. Chankowski, A. Falkowski and S. Pokorski, Double protection of the Higgs potential in a supersymmetric little Higgs model, Phys. Rev. Lett. 96 (2006) 031801 [hep-ph/0509311] [INSPIRE].
  14. [14]
    T.S. Roy and M. Schmaltz, Naturally heavy superpartners and a little Higgs, JHEP 01 (2006) 149 [hep-ph/0509357] [INSPIRE].
  15. [15]
    C. Csáki, G. Marandella, Y. Shirman and A. Strumia, The Super-little Higgs, Phys. Rev. D 73 (2006) 035006 [hep-ph/0510294] [INSPIRE].
  16. [16]
    B. Bellazzini, S. Pokorski, V.S. Rychkov and A. Varagnolo, Higgs doublet as a Goldstone boson in perturbative extensions of the Standard Model, JHEP 11 (2008) 027 [arXiv:0805.2107] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Bellazzini, C. Csáki, A. Delgado and A. Weiler, SUSY without the Little Hierarchy, Phys. Rev. D 79 (2009) 095003 [arXiv:0902.0015] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].
  19. [19]
    S. Chang, L.J. Hall and N. Weiner, A supersymmetric twin Higgs, Phys. Rev. D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].
  20. [20]
    N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Torre, Status of Composite Twin Higgs, http://indico.ictp.it/event/7627/session/76/contribution/472.
  22. [22]
    H. Beauchesne, K. Earl and T. Grégoire, The spontaneous \( {\mathbb{Z}}_2 \) breaking Twin Higgs, JHEP 01 (2016) 130 [arXiv:1510.06069] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Harnik, K. Howe and J. Kearney, Tadpole-Induced Electroweak Symmetry Breaking and PNGB Higgs Models, arXiv:1603.03772 [INSPIRE].
  24. [24]
    J.-H. Yu, Radiative- \( {\mathbb{Z}}_2 \) -breaking twin Higgs model, Phys. Rev. D 94 (2016) 111704 [arXiv:1608.01314] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.-H. Yu, A tale of twin Higgs: natural twin two Higgs doublet models, JHEP 12 (2016) 143 [arXiv:1608.05713] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Z. Chacko, Y. Nomura, M. Papucci and G. Perez, Natural little hierarchy from a partially goldstone twin Higgs, JHEP 01 (2006) 126 [hep-ph/0510273] [INSPIRE].
  27. [27]
    N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the Dark at the LHC, JHEP 07 (2015) 105 [arXiv:1501.05310] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Burdman, Z. Chacko, R. Harnik, L. de Lima and C.B. Verhaaren, Colorless Top Partners, a 125 GeV Higgs and the Limits on Naturalness, Phys. Rev. D 91 (2015) 055007 [arXiv:1411.3310] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Z. Chacko, D. Curtin and C.B. Verhaaren, A Quirky Probe of Neutral Naturalness, Phys. Rev. D 94 (2016) 011504 [arXiv:1512.05782] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D. Curtin and C.B. Verhaaren, Discovering Uncolored Naturalness in Exotic Higgs Decays, JHEP 12 (2015) 072 [arXiv:1506.06141] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H.-C. Cheng, S. Jung, E. Salvioni and Y. Tsai, Exotic Quarks in Twin Higgs Models, JHEP 03 (2016) 074 [arXiv:1512.02647] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Craig and A. Katz, The Fraternal WIMP Miracle, JCAP 10 (2015) 054 [arXiv:1505.07113] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    I. Garcıa García, R. Lasenby and J. March-Russell, Twin Higgs Asymmetric Dark Matter, Phys. Rev. Lett. 115 (2015) 121801 [arXiv:1505.07410] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    I. García García, R. Lasenby and J. March-Russell, Twin Higgs WIMP Dark Matter, Phys. Rev. D 92 (2015) 055034 [arXiv:1505.07109] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Farina, Asymmetric Twin Dark Matter, JCAP 11 (2015) 017 [arXiv:1506.03520] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Farina, A. Monteux and C.S. Shin, Twin mechanism for baryon and dark matter asymmetries, Phys. Rev. D 94 (2016) 035017 [arXiv:1604.08211] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R. Barbieri, L.J. Hall and K. Harigaya, Minimal Mirror Twin Higgs, JHEP 11 (2016) 172 [arXiv:1609.05589] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP 11 (2015) 158 [arXiv:1505.05488] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Bertolini and M. McCullough, The Social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs Effective Theory: Extended Higgs Sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Katz, M. Reece and A. Sajjad, Naturalness, bsγ and SUSY heavy Higgses, JHEP 10 (2014) 102 [arXiv:1406.1172] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].
  47. [47]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  48. [48]
    A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  50. [50]
    CMS collaboration, Search for a heavy charged Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the CMS detector, CMS-PAS-HIG-13-026.
  51. [51]
    F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [INSPIRE].
  52. [52]
    LHC Higgs Cross section Working Group collaboration, Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  53. [53]
    S. Dawson et al., Working Group Report: Higgs Boson, in proceedings of the Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., July 29 - August 6, 2013, [arXiv:1310.8361] [INSPIRE].
  54. [54]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Trabelsi, Rare decays and exotic states in quark flavour physics, in plenary talk at the EPS 2015 Conference, Vienna, Austria, July 22-29, 2015.Google Scholar
  56. [56]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    D. Greco and K. Mimouni, The RG-improved Twin Higgs effective potential at NNLL, JHEP 11 (2016) 108 [arXiv:1609.05922] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs Bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the Wedge: Search Strategies for Extended Higgs Sectors with Heavy Flavor Final States, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].ADSGoogle Scholar
  60. [60]
    N. Craig, J. Hajer, Y.-Y. Li, T. Liu and H. Zhang, Heavy Higgs bosons at low tan β: from the LHC to 100 TeV, JHEP 01 (2017) 018 [arXiv:1605.08744] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Coccaro, D. Curtin, H.J. Lubatti, H. Russell and J. Shelton, Data-driven Model-independent Searches for Long-lived Particles at the LHC, Phys. Rev. D 94 (2016) 113003 [arXiv:1605.02742] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, arXiv:1606.06298 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Département de Physique Théorique and Center for Astroparticle Physics (CAP)Université de GenèveGenève 4Switzerland
  3. 3.Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium
  4. 4.Institute of Theoretical Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  5. 5.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael
  6. 6.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  7. 7.Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations