Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions

Abstract

We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that k and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    E. Iancu and R. Venugopalan, The Color glass condensate and high-energy scattering in QCD, hep-ph/0303204 [INSPIRE].

  2. [2]

    J. Jalilian-Marian and Y.V. Kovchegov, Saturation physics and deuteron-Gold collisions at RHIC, Prog. Part. Nucl. Phys. 56 (2006) 104 [hep-ph/0505052] [INSPIRE].

  3. [3]

    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    F. Gelis and J. Jalilian-Marian, Photon production in high-energy proton nucleus collisions, Phys. Rev. D 66 (2002) 014021 [hep-ph/0205037] [INSPIRE].

  5. [5]

    F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    B.Z. Kopeliovich, A.V. Tarasov and A. Schafer, Bremsstrahlung of a quark propagating through a nucleus, Phys. Rev. C 59 (1999) 1609 [hep-ph/9808378] [INSPIRE].

  7. [7]

    R. Baier, A.H. Mueller and D. Schiff, Saturation and shadowing in high-energy proton nucleus dilepton production, Nucl. Phys. A 741 (2004) 358 [hep-ph/0403201] [INSPIRE].

  8. [8]

    J. Jalilian-Marian, Production of forward rapidity photons in high energy heavy ion collisions, Nucl. Phys. A 753 (2005) 307 [hep-ph/0501222] [INSPIRE].

  9. [9]

    J. Jalilian-Marian and A.H. Rezaeian, Prompt photon production and photon-hadron correlations at RHIC and the LHC from the Color Glass Condensate, Phys. Rev. D 86 (2012) 034016 [arXiv:1204.1319] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    A.H. Rezaeian, Semi-inclusive photon-hadron production in pp and pA collisions at RHIC and LHC, Phys. Rev. D 86 (2012) 094016 [arXiv:1209.0478] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    A.H. Rezaeian, Photon-jet ridge at RHIC and the LHC, Phys. Rev. D 93 (2016) 094030 [arXiv:1603.07354] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    G.A. Chirilli, B.-W. Xiao and F. Yuan, Inclusive Hadron Productions in pA Collisions, Phys. Rev. D 86 (2012) 054005 [arXiv:1203.6139] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    S. Benic and K. Fukushima, Photon from the annihilation process with CGC in the pA collision, Nucl. Phys. A 958 (2017) 1 [arXiv:1602.01989] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    O. Garcia-Montero, Prompt photon production in pA collisions as a probe of many-body gluodynamics at high energies, MSc Thesis, Ruprecht-Karls-Universität Heidelberg (2016).

  15. [15]

    J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass condensate approach. 1. Gluon production and the Cronin effect, Nucl. Phys. A 743 (2004) 13 [hep-ph/0402256] [INSPIRE].

  16. [16]

    J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass condensate approach. 2. Quark production, Nucl. Phys. A 743 (2004) 57 [hep-ph/0402257] [INSPIRE].

  17. [17]

    S.P. Baranov, A.V. Lipatov and N.P. Zotov, Prompt photon hadroproduction at high energies in off-shell gluon-gluon fusion, Phys. Rev. D 77 (2008) 074024 [arXiv:0708.3560] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    L. Motyka, M. Sadzikowski and T. Stebel, Lam-Tung relation breaking in Z 0 hadroproduction as a probe of parton transverse momentum, arXiv:1609.04300 [INSPIRE].

  19. [19]

    L.E. Gordon and W. Vogelsang, Polarized and unpolarized prompt photon production beyond the leading order, Phys. Rev. D 48 (1993) 3136 [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    F. Gelis and Y. Mehtar-Tani, Gluon propagation inside a high-energy nucleus, Phys. Rev. D 73 (2006) 034019 [hep-ph/0512079] [INSPIRE].

  21. [21]

    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. [22]

    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    J.S. Bell and R. Van Royen, On the low-burnett-kroll theorem for soft-photon emission, Nuovo Cim. A 60 (1969) 62 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    A. Krasnitz and R. Venugopalan, Nonperturbative computation of gluon minijet production in nuclear collisions at very high-energies, Nucl. Phys. B 557 (1999) 237 [hep-ph/9809433] [INSPIRE].

  25. [25]

    A. Krasnitz, Y. Nara and R. Venugopalan, Coherent gluon production in very high-energy heavy ion collisions, Phys. Rev. Lett. 87 (2001) 192302 [hep-ph/0108092] [INSPIRE].

  26. [26]

    T. Lappi, Production of gluons in the classical field model for heavy ion collisions, Phys. Rev. C 67 (2003) 054903 [hep-ph/0303076] [INSPIRE].

  27. [27]

    L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].

    Google Scholar 

  28. [28]

    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

    Google Scholar 

  30. [30]

    A. Dumitru and L.D. McLerran, How protons shatter colored glass, Nucl. Phys. A 700 (2002) 492 [hep-ph/0105268] [INSPIRE].

  31. [31]

    L.D. McLerran and R. Venugopalan, Fock space distributions, structure functions, higher twists and small x, Phys. Rev. D 59 (1999) 094002 [hep-ph/9809427] [INSPIRE].

  32. [32]

    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

  33. [33]

    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].

  34. [34]

    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

  35. [35]

    E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].

  36. [36]

    H. Fujii, F. Gelis and R. Venugopalan, Quantitative study of the violation of k-perpendicular-factorization in hadroproduction of quarks at collider energies, Phys. Rev. Lett. 95 (2005) 162002 [hep-ph/0504047] [INSPIRE].

  37. [37]

    H. Fujii, F. Gelis and R. Venugopalan, Quark pair production in high energy pA collisions: General features, Nucl. Phys. A 780 (2006) 146 [hep-ph/0603099] [INSPIRE].

  38. [38]

    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

  39. [39]

    L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

  40. [40]

    L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].

  41. [41]

    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

  42. [42]

    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].

  43. [43]

    K. Rummukainen and H. Weigert, Universal features of JIMWLK and BK evolution at small x, Nucl. Phys. A 739 (2004) 183 [hep-ph/0309306] [INSPIRE].

  44. [44]

    A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke and R. Venugopalan, Renormalization group evolution of multi-gluon correlators in high energy QCD, Phys. Lett. B 706 (2011) 219 [arXiv:1108.4764] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    Y.V. Kovchegov, Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

  46. [46]

    M.J. Russcher, Direct Photon Measurement in Proton-Proton and Deuteron-Gold Collisions, Ph.D. Thesis, Utrecht University (2008), http://drupal.star.bnl.gov/STAR/theses/ph-d/martijn-russcher.

  47. [47]

    PHENIX collaboration, A. Adare et al., Direct photon production in d+Au collisions at \( \sqrt{s_{\;N\;N}}=200 \) GeV, Phys. Rev. C 87 (2013) 054907 [arXiv:1208.1234] [INSPIRE].

  48. [48]

    D. Kharzeev, Y.V. Kovchegov and K. Tuchin, Cronin effect and high p T suppression in pA collisions, Phys. Rev. D 68 (2003) 094013 [hep-ph/0307037] [INSPIRE].

  49. [49]

    F. Gelis and R. Venugopalan, Large mass q q production from the color glass condensate, Phys. Rev. D 69 (2004) 014019 [hep-ph/0310090] [INSPIRE].

  50. [50]

    Z.-B. Kang, Y.-Q. Ma and R. Venugopalan, Quarkonium production in high energy proton-nucleus collisions: CGC meets NRQCD, JHEP 01 (2014) 056 [arXiv:1309.7337] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    Y.-Q. Ma and R. Venugopalan, Comprehensive Description of J/ψ Production in Proton-Proton Collisions at Collider Energies, Phys. Rev. Lett. 113 (2014) 192301 [arXiv:1408.4075] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    Y.-Q. Ma, R. Venugopalan and H.-F. Zhang, J/ψ production and suppression in high energy proton-nucleus collisions, Phys. Rev. D 92 (2015) 071901 [arXiv:1503.07772] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    H. Fujii and K. Watanabe, Heavy quark pair production in high energy pA collisions: Quarkonium, Nucl. Phys. A 915 (2013) 1 [arXiv:1304.2221] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    B. Ducloué, T. Lappi and H. Mäntysaari, Forward J/ψ production in proton-nucleus collisions at high energy, Phys. Rev. D 91 (2015) 114005 [arXiv:1503.02789] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    C. Shen, J.F. Paquet, G.S. Denicol, S. Jeon and C. Gale, Thermal photon radiation in high multiplicity p+Pb collisions at the Large Hadron Collider, Phys. Rev. Lett. 116 (2016) 072301 [arXiv:1504.07989] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    A. Belogianni et al., Observation of a soft photon signal in excess of QED expectations in p p interactions, Phys. Lett. B 548 (2002) 129 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    K. Fukushima and Y. Hidaka, Two Gluon Production and Longitudinal Correlations in the Color Glass Condensate, Nucl. Phys. A 813 (2008) 171 [arXiv:0806.2143] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjin Benić.

Additional information

ArXiv ePrint: 1609.09424

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benić, S., Fukushima, K., Garcia-Montero, O. et al. Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions. J. High Energ. Phys. 2017, 115 (2017). https://doi.org/10.1007/JHEP01(2017)115

Download citation

Keywords

  • Heavy Ion Phenomenology
  • NLO Computations