Journal of High Energy Physics

, 2017:100 | Cite as

Probing the scotogenic FIMP at the LHC

  • Andre G. Hessler
  • Alejandro Ibarra
  • Emiliano Molinaro
  • Stefan Vogl
Open Access
Regular Article - Theoretical Physics


We analyse the signatures at the Large Hadron Collider (LHC) of the scotogenic model, when the lightest Z2-odd particle is a singlet fermion and a feebly interacting massive particle (FIMP). We further assume that the singlet fermion constitutes the dark matter and that it is produced in the early Universe via the freeze-in mechanism. The small couplings required to reproduce the observed dark matter abundance translate into decay-lengths for the next-to-lightest Z2-odd particle which can be macroscopic, potentially leading to spectacular signatures at the LHC. We characterize the possible signals of the model according to the spectrum of the Z2-odd particles and we derive, for each of the cases, bounds on the parameters of the model from current searches.


Beyond Standard Model Neutrino Physics 


  1. [1]
    G. Bertone et al., Particle Dark Matter: Observations, Models and Searches, Cambridge University Press, Cambridge, U.K. (2010), pg. 738.Google Scholar
  2. [2]
    L. Bergström, Nonbaryonic dark matter: Observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].
  3. [3]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  4. [4]
    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2015) 1 [arXiv:1407.0017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S.S. Gershtein and Ya.B. Zeldovich, Rest Mass of Muonic Neutrino and Cosmology, JETP Lett. 4 (1966) 120 [INSPIRE].
  6. [6]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  7. [7]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  9. [9]
    E. Ma, Common origin of neutrino mass, dark matter and baryogenesis, Mod. Phys. Lett. A 21 (2006) 1777 [hep-ph/0605180] [INSPIRE].
  10. [10]
    J. Kubo, E. Ma and D. Suematsu, Cold Dark Matter, Radiative Neutrino Mass, μeγ and Neutrinoless Double Beta Decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].
  11. [11]
    E. Molinaro, C.E. Yaguna and O. Zapata, FIMP realization of the scotogenic model, JCAP 07 (2014) 015 [arXiv:1405.1259] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  13. [13]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  14. [14]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  15. [15]
    I.F. Ginzburg and I.P. Ivanov, Tree level unitarity constraints in the 2HDM with CP-violation, hep-ph/0312374 [INSPIRE].
  16. [16]
    A. Merle and M. Platscher, Running of radiative neutrino masses: the scotogenic model — revisited, JHEP 11 (2015) 148 [arXiv:1507.06314] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Toma and A. Vicente, Lepton Flavor Violation in the Scotogenic Model, JHEP 01 (2014) 160 [arXiv:1312.2840] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  19. [19]
    A. Ibarra, C.E. Yaguna and O. Zapata, Direct Detection of Fermion Dark Matter in the Radiative Seesaw Model, Phys. Rev. D 93 (2016) 035012 [arXiv:1601.01163] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].
  21. [21]
    A.G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Impact of the Higgs boson on the production of exotic particles at the LHC, Phys. Rev. D 91 (2015) 115004 [arXiv:1408.0983] [INSPIRE].ADSGoogle Scholar
  22. [22]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  23. [23]
    ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].
  24. [24]
    CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].
  25. [25]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  26. [26]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  27. [27]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  28. [28]
    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
  29. [29]
    J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, arXiv:1606.06298 [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  31. [31]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    CMS collaboration, Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. Lett. 114 (2015) 061801 [arXiv:1409.4789] [INSPIRE].
  33. [33]
    CMS collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052012 [arXiv:1411.6977] [INSPIRE].
  34. [34]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  35. [35]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  36. [36]
    ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].
  37. [37]
    ATLAS collaboration, ATLAS liquid-argon calorimeter: Technical Design Report, CERN-LHCC-96-041.
  38. [38]
    ATLAS collaboration, ATLAS tile calorimeter: Technical Design Report, CERN-LHCC-96-042.
  39. [39]
    ATLAS collaboration, ATLAS muon spectrometer: Technical Design Report, CERN-LHCC-97-022, ATLAS-TDR-10.
  40. [40]
    D.E. Groom, N.V. Mokhov and S.I. Striganov, Muon stopping power and range tables 10-MeV to 100-TeV, Atom. Data Nucl. Data Tabl. 78 (2001) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Aurousseau, Mesure in situ de l’uniformité du calorimètre électromagnétique et recherche des premiers événements di-photons dans ATLAS, CERN-THESIS-2010-138, LAPP-T-2010-05.
  42. [42]
    A.A. Abdelalim, Study on the Impact of Cross-Talk in the ATLAS Electromagnetic Calorimeter on the Signal Prediction in the Strip Layer, CERN-THESIS-2008-151 [INSPIRE].
  43. [43]
    Z. Liu and B. Tweedie, The Fate of Long-Lived Superparticles with Hadronic Decays after LHC Run 1, JHEP 06 (2015) 042 [arXiv:1503.05923] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Physik-Department T30dTechnische Universität MünchenGarchingGermany
  2. 2.CP3-Origins and University of Southern DenmarkOdense MDenmark
  3. 3.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  4. 4.Institute for Nuclear Physics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations