Advertisement

Journal of High Energy Physics

, 2017:100 | Cite as

Probing the scotogenic FIMP at the LHC

  • Andre G. Hessler
  • Alejandro Ibarra
  • Emiliano MolinaroEmail author
  • Stefan Vogl
Open Access
Regular Article - Theoretical Physics

Abstract

We analyse the signatures at the Large Hadron Collider (LHC) of the scotogenic model, when the lightest Z 2-odd particle is a singlet fermion and a feebly interacting massive particle (FIMP). We further assume that the singlet fermion constitutes the dark matter and that it is produced in the early Universe via the freeze-in mechanism. The small couplings required to reproduce the observed dark matter abundance translate into decay-lengths for the next-to-lightest Z 2-odd particle which can be macroscopic, potentially leading to spectacular signatures at the LHC. We characterize the possible signals of the model according to the spectrum of the Z 2-odd particles and we derive, for each of the cases, bounds on the parameters of the model from current searches.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Bertone et al., Particle Dark Matter: Observations, Models and Searches, Cambridge University Press, Cambridge, U.K. (2010), pg. 738.Google Scholar
  2. [2]
    L. Bergström, Nonbaryonic dark matter: Observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].
  3. [3]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  4. [4]
    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2015) 1 [arXiv:1407.0017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S.S. Gershtein and Ya.B. Zeldovich, Rest Mass of Muonic Neutrino and Cosmology, JETP Lett. 4 (1966) 120 [INSPIRE].
  6. [6]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  7. [7]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  9. [9]
    E. Ma, Common origin of neutrino mass, dark matter and baryogenesis, Mod. Phys. Lett. A 21 (2006) 1777 [hep-ph/0605180] [INSPIRE].
  10. [10]
    J. Kubo, E. Ma and D. Suematsu, Cold Dark Matter, Radiative Neutrino Mass, μeγ and Neutrinoless Double Beta Decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].
  11. [11]
    E. Molinaro, C.E. Yaguna and O. Zapata, FIMP realization of the scotogenic model, JCAP 07 (2014) 015 [arXiv:1405.1259] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  13. [13]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  14. [14]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  15. [15]
    I.F. Ginzburg and I.P. Ivanov, Tree level unitarity constraints in the 2HDM with CP-violation, hep-ph/0312374 [INSPIRE].
  16. [16]
    A. Merle and M. Platscher, Running of radiative neutrino masses: the scotogenic model — revisited, JHEP 11 (2015) 148 [arXiv:1507.06314] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Toma and A. Vicente, Lepton Flavor Violation in the Scotogenic Model, JHEP 01 (2014) 160 [arXiv:1312.2840] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  19. [19]
    A. Ibarra, C.E. Yaguna and O. Zapata, Direct Detection of Fermion Dark Matter in the Radiative Seesaw Model, Phys. Rev. D 93 (2016) 035012 [arXiv:1601.01163] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].
  21. [21]
    A.G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Impact of the Higgs boson on the production of exotic particles at the LHC, Phys. Rev. D 91 (2015) 115004 [arXiv:1408.0983] [INSPIRE].ADSGoogle Scholar
  22. [22]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  23. [23]
    ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].
  24. [24]
    CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].
  25. [25]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  26. [26]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  27. [27]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  28. [28]
    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
  29. [29]
    J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, arXiv:1606.06298 [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  31. [31]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    CMS collaboration, Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. Lett. 114 (2015) 061801 [arXiv:1409.4789] [INSPIRE].
  33. [33]
    CMS collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052012 [arXiv:1411.6977] [INSPIRE].
  34. [34]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  35. [35]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  36. [36]
    ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].
  37. [37]
    ATLAS collaboration, ATLAS liquid-argon calorimeter: Technical Design Report, CERN-LHCC-96-041.
  38. [38]
    ATLAS collaboration, ATLAS tile calorimeter: Technical Design Report, CERN-LHCC-96-042.
  39. [39]
    ATLAS collaboration, ATLAS muon spectrometer: Technical Design Report, CERN-LHCC-97-022, ATLAS-TDR-10.
  40. [40]
    D.E. Groom, N.V. Mokhov and S.I. Striganov, Muon stopping power and range tables 10-MeV to 100-TeV, Atom. Data Nucl. Data Tabl. 78 (2001) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Aurousseau, Mesure in situ de l’uniformité du calorimètre électromagnétique et recherche des premiers événements di-photons dans ATLAS, CERN-THESIS-2010-138, LAPP-T-2010-05.
  42. [42]
    A.A. Abdelalim, Study on the Impact of Cross-Talk in the ATLAS Electromagnetic Calorimeter on the Signal Prediction in the Strip Layer, CERN-THESIS-2008-151 [INSPIRE].
  43. [43]
    Z. Liu and B. Tweedie, The Fate of Long-Lived Superparticles with Hadronic Decays after LHC Run 1, JHEP 06 (2015) 042 [arXiv:1503.05923] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Physik-Department T30dTechnische Universität MünchenGarchingGermany
  2. 2.CP3-Origins and University of Southern DenmarkOdense MDenmark
  3. 3.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  4. 4.Institute for Nuclear Physics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations