Advertisement

Di-boson signatures as standard candles for partial compositeness

  • Alexander Belyaev
  • Giacomo Cacciapaglia
  • Haiying Cai
  • Gabriele Ferretti
  • Thomas FlackeEmail author
  • Alberto Parolini
  • Hugo Serodio
Open Access
Regular Article - Theoretical Physics

Abstract

Composite Higgs Models are often constructed including fermionic top partners with a mass around the TeV scale, with the top partners playing the role of stabilizing the Higgs potential and enforcing partial compositeness for the top quark. A class of models of this kind can be formulated in terms of fermionic strongly coupled gauge theories. A common feature they all share is the presence of specific additional scalar resonances, namely two neutral singlets and a colored octet, described by a simple effective Lagrangian. We study the phenomenology of these scalars, both in a model independent and model dependent way, including the bounds from all the available searches in the relevant channels with di-boson and di-top final states. We develop a generic framework which can be used to constrain any model containing pseudo-scalar singlets or octets. Using it, we find that such signatures provide strong bounds on the compositeness scale complementary to the traditional EWPT and Higgs couplings deviations. In many cases a relatively light scalar can be on the verge of discovery as a first sign of new physics.

Keywords

Technicolor and Composite Models Beyond Standard Model Global Symmetries Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Ferretti, Gauge theories of partial compositeness: scenarios for Run-II of the LHC, JHEP 06 (2016) 107 [arXiv:1604.06467] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Ferretti, UV completions of partial compositeness: the case for a SU(4) gauge group, JHEP 06 (2014) 142 [arXiv:1404.7137] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, arXiv:1506.00623 [INSPIRE].
  8. [8]
    T. DeGrand, M. Golterman, E.T. Neil and Y. Shamir, One-loop chiral perturbation theory with two fermion representations, Phys. Rev. D 94 (2016) 025020 [arXiv:1605.07738] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    M. Golterman and Y. Shamir, Top quark induced effective potential in a composite Higgs model, Phys. Rev. D 91 (2015) 094506 [arXiv:1502.00390] [INSPIRE].ADSGoogle Scholar
  10. [10]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961].CrossRefzbMATHGoogle Scholar
  12. [12]
    ATLAS collaboration, Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-018 (2013).
  13. [13]
    ATLAS collaboration, Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-060 (2013).
  14. [14]
    CMS collaboration, Inclusive search for a vector-like T quark with charge \( {\scriptscriptstyle \frac{2}{3}} \) in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].
  15. [15]
    CMS collaboration, Search for top-quark partners with charge 5/3 in the same-sign dilepton final state, Phys. Rev. Lett. 112 (2014) 171801 [arXiv:1312.2391] [INSPIRE].
  16. [16]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].
  17. [17]
    F. Caracciolo, A. Parolini and M. Serone, UV completions of composite Higgs models with partial compositeness, JHEP 02 (2013) 066 [arXiv:1211.7290] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. von Gersdorff, E. Pontón and R. Rosenfeld, The dynamical composite Higgs, JHEP 06 (2015) 119 [arXiv:1502.07340] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Sannino, A. Strumia, A. Tesi and E. Vigiani, Fundamental partial compositeness, JHEP 11 (2016) 029 [arXiv:1607.01659] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M.E. Peskin, The alignment of the vacuum in theories of technicolor, Nucl. Phys. B 175 (1980) 197 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Preskill, Subgroup alignment in hypercolor theories, Nucl. Phys. B 177 (1981) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos and P. Sikivie, Can one tell technicolor from a hole in the ground?, Nucl. Phys. B 182 (1981) 529 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Casalbuoni, A. Deandrea, S. De Curtis, D. Dominici, R. Gatto and J.F. Gunion, Detecting and studying the lightest pseudoGoldstone boson at future pp, e+e and μ+μ colliders, Nucl. Phys. B 555 (1999) 3 [hep-ph/9809523] [INSPIRE].
  26. [26]
    A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S. Le Corre and F. Sannino, Fundamental composite electroweak dynamics: status at the LHC, arXiv:1502.04718 [INSPIRE].
  27. [27]
    A. Belyaev et al., Singlets in composite Higgs models in light of the LHC 750 GeV diphoton excess, Phys. Rev. D 94 (2016) 015004 [arXiv:1512.07242] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    G. Cacciapaglia, A. Deandrea and M. Hashimoto, Scalar hint from the diboson excess?, Phys. Rev. Lett. 115 (2015) 171802 [arXiv:1507.03098] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. Cai, T. Flacke and M. Lespinasse, A composite scalar hint from di-boson resonances?, arXiv:1512.04508 [INSPIRE].
  32. [32]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  33. [33]
    T. Ma and G. Cacciapaglia, Fundamental composite 2HDM: SU(N ) with 4 flavours, JHEP 03 (2016) 211 [arXiv:1508.07014] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. DeGrand, Lattice tests of beyond standard model dynamics, Rev. Mod. Phys. 88 (2016) 015001 [arXiv:1510.05018] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C.H. Wong, Fate of the conformal fixed point with twelve massless fermions and SU(3) gauge group, Phys. Rev. D 94 (2016) 091501 [arXiv:1607.06121] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Hasenfratz, C. Rebbi and O. Witzel, Large scale separation and resonances within LHC range from a prototype BSM model, arXiv:1609.01401 [INSPIRE].
  37. [37]
    R.C. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg and O. Witzel, Composite Higgs model at a conformal fixed point, Phys. Rev. D 93 (2016) 075028 [arXiv:1512.02576] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, in Recent developments in gauge theories, G. ’t Hooft ed., NATO Sciences Series B volume 59, Springer, Germany (1980).Google Scholar
  40. [40]
    E. Katz, J.-y. Lee, A.E. Nelson and D.G.E. Walker, A composite little Higgs model, JHEP 10 (2005) 088 [hep-ph/0312287] [INSPIRE].
  41. [41]
    G. Cacciapaglia and A. Parolini, Light ’t Hooft top partners, Phys. Rev. D 93 (2016) 071701 [arXiv:1511.05163] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Preskill and S. Weinberg, ‘Decoupling’ constraints on massless composite particles, Phys. Rev. D 24 (1981) 1059 [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J. Bijnens, A. Bramon and F. Cornet, Pseudoscalar decays into photon-photon in chiral perturbation theory, Phys. Rev. Lett. 61 (1988) 1453 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Kaiser and H. Leutwyler, Pseudoscalar decay constants at large-Nc, hep-ph/9806336 [INSPIRE].
  46. [46]
    T.A. DeGrand, M. Golterman, W.I. Jay, E.T. Neil, Y. Shamir and B. Svetitsky, Radiative contribution to the effective potential in composite Higgs models from lattice gauge theory, Phys. Rev. D 94 (2016) 054501 [arXiv:1606.02695] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Englert, P. Schichtel and M. Spannowsky, Same-sign W pair production in composite Higgs models, arXiv:1610.07354 [INSPIRE].
  48. [48]
    B. Gripaios, M. Nardecchia and T. You, On the structure of anomalous composite Higgs models, arXiv:1605.09647 [INSPIRE].
  49. [49]
    E. Eichten and K.D. Lane, Dynamical breaking of weak interaction symmetries, Phys. Lett. B 90 (1980) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    O. Matsedonskyi, On flavour and naturalness of composite Higgs models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. Cacciapaglia et al., Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage, JHEP 06 (2015) 085 [arXiv:1501.03818] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    G. Panico and A. Pomarol, Flavor hierarchies from dynamical scales, JHEP 07 (2016) 097 [arXiv:1603.06609] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    E. Witten, Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].zbMATHGoogle Scholar
  55. [55]
    G. Cacciapaglia and F. Sannino, Fundamental composite (Goldstone) Higgs dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G. Cacciapaglia, H. Cai, A. Deandrea, T. Flacke, S.J. Lee and A. Parolini, Composite scalars at the LHC: the Higgs, the Sextet and the Octet, JHEP 11 (2015) 201 [arXiv:1507.02283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    Y. Bai, V. Barger and J. Berger, Constraints on color-octet companions of a 750 GeV heavy pion from dijet and photon plus jet resonance searches, Phys. Rev. D 94 (2016) 011701 [arXiv:1604.07835] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Belyaev, R. Rosenfeld and A.R. Zerwekh, Tevatron potential for technicolor search with prompt photons, Phys. Lett. B 462 (1999) 150 [hep-ph/9905468] [INSPIRE].
  62. [62]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  64. [64]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C. Anastasiou et al., CP-even scalar boson production via gluon fusion at the LHC, JHEP 09 (2016) 037 [arXiv:1605.05761] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  67. [67]
    CMS collaboration, Search for resonances decaying to dijet final states at \( \sqrt{s}=8 \) TeV with scouting data, CMS-PAS-EXO-14-005 (2014).
  68. [68]
    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
  69. [69]
    ATLAS collaboration, Search for light dijet resonances with the ATLAS detector using a Trigger-Level Analysis in LHC pp collisions at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-030 (2016).
  70. [70]
    ATLAS collaboration, Search for new phenomena in dijet events with the ATLAS detector at \( \sqrt{s}=13 \) TeV with 2015 and 2016 data, ATLAS-CONF-2016-069 (2016).
  71. [71]
    CMS Collaboration, Search for narrow resonances decaying to dijets in pp collisions at \( \sqrt{s}=13 \) TeV using 12.9 fb−1, CMS-PAS-EXO-16-032 (2016).
  72. [72]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  73. [73]
    CMS collaboration, Search for new physics in high mass diphoton events in 3.3 fb−1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 TeV and 13 TeV, CMS-PAS-EXO-16-018 (2016).
  74. [74]
    ATLAS collaboration, Search for scalar diphoton resonances with 15.4 fb−1 of data collected at \( \sqrt{s}=13 \) TeV in 2015 and 2016 with the ATLAS detector, ATLAS-CONF-2016-059 (2016).
  75. [75]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  76. [76]
    ATLAS collaboration, Search for production of W W/W Z resonances decaying to a lepton, neutrino and jets in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 209 [Erratum ibid. C 75 (2015) 370] [arXiv:1503.04677] [INSPIRE].
  77. [77]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  78. [78]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].
  79. [79]
    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].
  80. [80]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-074 (2016).
  81. [81]
    ATLAS collaboration, Search for diboson resonance production in the ℓνqq final state using pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-062 (2016).
  82. [82]
    ATLAS collaboration, Search for resonances with boson-tagged jets in 15.5 fb−1 of pp collisions at \( \sqrt{s}=13 \) TeV collected with the ATLAS detector, ATLAS-CONF-2016-055 (2016).
  83. [83]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted W and Z bosons at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-002 (2013).
  84. [84]
    CMS collaboration, Search for high mass Higgs to W W with fully leptonic decays using 2015 data, CMS-PAS-HIG-16-023 (2016).
  85. [85]
    CMS collaboration, Search for new resonances decaying to WW/WZ → ℓνqq, CMS-PAS-B2G-16-020 (2016).
  86. [86]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C76 (2016) 45 [arXiv:1507.05930].
  87. [87]
    ATLAS collaboration, Search for resonant diboson production in the \( \ell \ell q\overline{q} \) final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 69 [arXiv:1409.6190] [INSPIRE].
  88. [88]
    ATLAS collaboration, Study of the Higgs boson properties and search for high-mass scalar resonances in the HZZ → 4ℓ decay channel at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-079 (2016).
  89. [89]
    ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the llqq and vvqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-082 (2016).
  90. [90]
    ATLAS collaboration, Search for new phenomena in the Z(→ℓℓ) + ETmiss final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-056 (2016).
  91. [91]
    CMS collaboration, Search for diboson resonances in the semileptonic \( X\to ZV\to {\ell}^{+}{\ell}^{-}q\overline{q} \) final state at \( \sqrt{s}=13 \) TeV with CMS, CMS-PAS-B2G-16-010 (2016).
  92. [92]
    CMS collaboration, Measurements of properties of the Higgs boson and search for an additional resonance in the four-lepton final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-033 (2016).
  93. [93]
    CMS collaboration, Search for scalar resonances in the 200-500 GeV mass range decaying into a Z and a photon in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-031 (2014).
  94. [94]
    CMS collaboration, Search for high-mass resonances in the \( Z\left(q\overline{q}\right)\gamma \) final state at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-16-025 (2016).
  95. [95]
    ATLAS collaboration, Search for new resonances decaying to a Z boson and a photon in 13.3 fb−1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-044 (2016).
  96. [96]
    CMS collaboration, Search for high-mass resonances in Zγe+eγ/μ+μγ final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-034 (2016).
  97. [97]
    CMS collaboration, Search for high-mass resonances in \( Z\left(q\overline{q}\right)\gamma \) final state in pp collisions at \( \sqrt{s}=13 \) TeV with 12.9 fb−1, CMS-PAS-EXO-16-035 (2016).
  98. [98]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
  99. [99]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].
  100. [100]
    ATLAS collaboration, Search for heavy particles decaying to pairs of highly-boosted top quarks using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-014 (2016).
  101. [101]
    CMS collaboration, Search for \( t\overline{t} \) resonances in boosted semileptonic final states in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-15-002 (2015).
  102. [102]
    N.V. Krasnikov, The phenomenology of scalar color octets, JETP Lett. 62 (1995) 7 [hep-ph/9506431] [INSPIRE].
  103. [103]
    A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the CERN LHC, Phys. Rev. D 74 (2006) 035009 [hep-ph/0606172] [INSPIRE].
  104. [104]
    M.I. Gresham and M.B. Wise, Color octet scalar production at the LHC, Phys. Rev. D 76 (2007) 075003 [arXiv:0706.0909] [INSPIRE].ADSGoogle Scholar
  105. [105]
    S.Y. Choi et al., Color-octet scalars of N = 2 supersymmetry at the LHC, Phys. Lett. B 672 (2009) 246 [arXiv:0812.3586] [INSPIRE].
  106. [106]
    T. Plehn and T.M.P. Tait, Seeking sgluons, J. Phys. G 36 (2009) 075001 [arXiv:0810.3919] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    CMS collaboration, Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 747 (2015) 98 [arXiv:1412.7706] [INSPIRE].
  108. [108]
    ATLAS collaboration, A search for pair produced resonances in four jets final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, ATLAS-CONF-2016-084 (2016).
  109. [109]
    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].
  110. [110]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].
  111. [111]
    ATLAS collaboration, Search for four-top-quark production in final states with one charged lepton and multiple jets using 3.2 fb−1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-020 (2016).
  112. [112]
    E. Eichten and K.D. Lane, Multiscale technicolor and top production, Phys. Lett. B 327 (1994) 129 [hep-ph/9401236] [INSPIRE].
  113. [113]
    ATLAS collaboration, Search for new phenomena in photon+jet events collected in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 728 (2014) 562 [arXiv:1309.3230] [INSPIRE].
  114. [114]
    ATLAS collaboration, Search for new phenomena with photon+jet events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2016) 041 [arXiv:1512.05910] [INSPIRE].
  115. [115]
    CMS collaboration, Search for excited quarks in the γ+ jet final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 738 (2014) 274 [arXiv:1406.5171] [INSPIRE].
  116. [116]
    CMS collaboration, Search for excited quarks in the photon + jet final state in proton proton collisions at 13 TeV, CMS-PAS-EXO-16-015 (2016).
  117. [117]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  118. [118]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  119. [119]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  120. [120]
    L.M. Carpenter and R. Colburn, Searching for standard model adjoint scalars with diboson resonance signatures, JHEP 12 (2015) 151 [arXiv:1509.07869] [INSPIRE].ADSGoogle Scholar
  121. [121]
    S. Raby, S. Dimopoulos and L. Susskind, Tumbling gauge theories, Nucl. Phys. B 169 (1980) 373 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  122. [122]
    E. Eichten and F. Feinberg, Comment on tumbling gauge theories, Phys. Lett. B 110 (1982) 232 [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    K.D. Lane and E. Eichten, Two scale technicolor, Phys. Lett. B 222 (1989) 274 [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    ATLAS collaboration, Search for new resonances in W γ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].
  125. [125]
    CMS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the CMS detector, CMS-PAS-EXO-12-045 (2012).
  126. [126]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  128. [128]
    H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Alexander Belyaev
    • 1
    • 2
  • Giacomo Cacciapaglia
    • 3
  • Haiying Cai
    • 3
  • Gabriele Ferretti
    • 4
  • Thomas Flacke
    • 5
    • 6
    Email author
  • Alberto Parolini
    • 6
  • Hugo Serodio
    • 6
    • 7
  1. 1.School of Physics & AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Particle Physics DepartmentRutherford Appleton LaboratoryDidcotU.K.
  3. 3.Univerity of Lyon, Université Lyon 1, CNRS/IN2P3, IPNLVilleurbanneFrance
  4. 4.Department of PhysicsChalmers University of TechnologyGöteborgSweden
  5. 5.Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonKorea
  6. 6.Department of PhysicsKorea UniversitySeoulKorea
  7. 7.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations