Advertisement

Full mass dependence in Higgs boson production in association with jets at the LHC and FCC

  • Nicolas Greiner
  • Stefan Höche
  • Gionata Luisoni
  • Marek Schönherr
  • Jan-Christopher Winter
Open Access
Regular Article - Theoretical Physics

Abstract

The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We find that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops is found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. We further study the impact of mass corrections when VBF selection cuts are applied and when the center-of-mass energy is increased to 100 TeV.

Keywords

Jets NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Hautmann, Heavy top limit and double logarithmic contributions to Higgs production at m H2/s much less than 1, Phys. Lett. B 535 (2002) 159 [hep-ph/0203140] [INSPIRE].
  4. [4]
    R.S. Pasechnik, O.V. Teryaev and A. Szczurek, Scalar Higgs boson production in a fusion of two off-shell gluons, Eur. Phys. J. C 47 (2006) 429 [hep-ph/0603258] [INSPIRE].
  5. [5]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Forte and C. Muselli, High energy resummation of transverse momentum distributions: Higgs in gluon fusion, JHEP 03 (2016) 122 [arXiv:1511.05561] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Caola, S. Forte, S. Marzani, C. Muselli and G. Vita, The Higgs transverse momentum spectrum with finite quark masses beyond leading order, JHEP 08 (2016) 150 [arXiv:1606.04100] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Caola, S. Forte and S. Marzani, Small x resummation of rapidity distributions: the case of Higgs production, Nucl. Phys. B 846 (2011) 167 [arXiv:1010.2743] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    U. Baur and E.W.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  13. [13]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Higgs + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [INSPIRE].
  14. [14]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].
  15. [15]
    F. Campanario and M. Kubocz, Higgs boson production in association with three jets via gluon fusion at the LHC: gluonic contributions, Phys. Rev. D 88 (2013) 054021 [arXiv:1306.1830] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass effects in the Higgs-gluon coupling: boosted vs off-shell production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Frederix, S. Frixione, E. Vryonidou and M. Wiesemann, Heavy-quark mass effects in Higgs plus jets production, JHEP 08 (2016) 006 [arXiv:1604.03017] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Melnikov and A. Penin, On the light quark mass effects in Higgs boson production in gluon fusion, JHEP 05 (2016) 172 [arXiv:1602.09020] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, arXiv:1606.09408 [INSPIRE].
  20. [20]
    G. Cullen et al., Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett. 111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Greiner, S. Höche, G. Luisoni, M. Schönherr, J.-C. Winter and V. Yundin, Phenomenological analysis of Higgs boson production through gluon fusion in association with jets, JHEP 01 (2016) 169 [arXiv:1506.01016] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  24. [24]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  26. [26]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  27. [27]
    G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: a form library for helicity spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    T. Reiter, Optimising code generation with haggies, Comput. Phys. Commun. 181 (2010) 1301 [arXiv:0907.3714] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  30. [30]
    T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multi-leg one-loop massive amplitudes from integrand reduction via Laurent expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  33. [33]
    P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial reconstruction at the integrand level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    G. Cullen et al., Golem95C: a library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828 [arXiv:1312.3887] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  42. [42]
    T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Höche, Efficient dipole subtraction with Comix, (2014).Google Scholar
  44. [44]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    Z. Bern et al., Ntuples for NLO events at hadron colliders, Comput. Phys. Commun. 185 (2014) 1443 [arXiv:1310.7439] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.R. Andersen et al., Les Houches 2015: physics at TeV colliders Standard Model working group report, arXiv:1605.04692 [INSPIRE].
  48. [48]
    D. Maître, G. Heinrich and M. Johnson, N(N)LO event files: applications and prospects, PoS(LL2016)016 [arXiv:1607.06259] [INSPIRE].
  49. [49]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  50. [50]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140 [arXiv:1501.04637] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Nicolas Greiner
    • 1
  • Stefan Höche
    • 2
  • Gionata Luisoni
    • 3
  • Marek Schönherr
    • 1
  • Jan-Christopher Winter
    • 4
  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.Theoretical Physics DepartmentCERNGenevaSwitzerland
  4. 4.Department of Physics and AstronomyMichigan State UniversityEast LansingU.S.A.

Personalised recommendations