Leptogenesis in a Δ(27) × SO(10) SUSY GUT

Abstract

Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino N 1 due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making N 1 leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe Y B from flavoured N 1 leptogenesis in a recently proposed Δ(27) × SO(10) SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed Y B places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

  2. [2]

    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  5. [5]

    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].

  7. [7]

    W. Buchmüller and M. Plümacher, CP asymmetry in Majorana neutrino decays, Phys. Lett. B 431 (1998) 354 [hep-ph/9710460] [INSPIRE].

  8. [8]

    W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter-antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [Erratum ibid. B 793 (2008) 362] [hep-ph/0205349] [INSPIRE].

  9. [9]

    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

  10. [10]

    A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].

  11. [11]

    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

  12. [12]

    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  13. [13]

    H. Georgi, The state of the art — gauge theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE].

  16. [16]

    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, Nucl. Phys. B 856 (2012) 180 [arXiv:1003.5132] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. [17]

    P. Di Bari, L. Marzola and M. Re Fiorentin, Decrypting SO(10)-inspired leptogenesis, Nucl. Phys. B 893 (2015) 122 [arXiv:1411.5478] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    P. Di Bari and M. Re Fiorentin, Supersymmetric SO(10)-inspired leptogenesis and a new N 2 -dominated scenario, JCAP 03 (2016) 039 [arXiv:1512.06739] [INSPIRE].

    Article  Google Scholar 

  19. [19]

    P. Di Bari and S.F. King, Successful N 2 leptogenesis with flavour coupling effects in realistic unified models, JCAP 10 (2015) 008 [arXiv:1507.06431] [INSPIRE].

    Article  Google Scholar 

  20. [20]

    A. Yu. Smirnov, Seesaw enhancement of lepton mixing, Phys. Rev. D 48 (1993) 3264 [hep-ph/9304205] [INSPIRE].

  21. [21]

    W. Buchmüller and M. Plümacher, Baryon asymmetry and neutrino mixing, Phys. Lett. B 389 (1996) 73 [hep-ph/9608308] [INSPIRE].

  22. [22]

    E. Nezri and J. Orloff, Neutrino oscillations versus leptogenesis in SO(10) models, JHEP 04 (2003) 020 [hep-ph/0004227] [INSPIRE].

  23. [23]

    F. Buccella, D. Falcone and F. Tramontano, Baryogenesis via leptogenesis in SO(10) models, Phys. Lett. B 524 (2002) 241 [hep-ph/0108172] [INSPIRE].

  24. [24]

    G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim and M.N. Rebelo, Leptogenesis, CP-violation and neutrino data: what can we learn?, Nucl. Phys. B 640 (2002) 202 [hep-ph/0202030] [INSPIRE].

  25. [25]

    E.K. Akhmedov, M. Frigerio and A. Yu. Smirnov, Probing the seesaw mechanism with neutrino data and leptogenesis, JHEP 09 (2003) 021 [hep-ph/0305322] [INSPIRE].

  26. [26]

    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].

  27. [27]

    S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].

  28. [28]

    F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [arXiv:0902.3250] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    B. Dutta, Y. Mimura and R.N. Mohapatra, An SO(10) grand unified theory of flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    K.M. Patel, An SO(10) × S 4 × Z 4 model of quark-lepton complementarity, Phys. Lett. B 695 (2011) 225 [arXiv:1008.5061] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with type II seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    P.S. Bhupal Dev, B. Dutta, R.N. Mohapatra and M. Severson, θ 13 and proton decay in a minimal SO(10) × S 4 model of flavor, Phys. Rev. D 86 (2012) 035002 [arXiv:1202.4012] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    I. de Medeiros Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ 13, JHEP 12 (2012) 041 [arXiv:1203.6636] [INSPIRE].

    Article  Google Scholar 

  34. [34]

    A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    H.M. Lee et al., A unique Z R4 symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    H.M. Lee et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys. B 850 (2011) 1 [arXiv:1102.3595] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  38. [38]

    E. Ma, Neutrino mass matrix from Δ(27) symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [INSPIRE].

  39. [39]

    I. de Medeiros Varzielas, Neutrino tri-bi-maximal mixing from Δ(27), AIP Conf. Proc. 903 (2007) 397 [hep-ph/0610351] [INSPIRE].

  40. [40]

    E. Ma, Near tri-bi-maximal neutrino mixing with Δ(27) symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    I. de Medeiros Varzielas, Family symmetries and the origin of fermion masses and mixings, arXiv:0801.2775 [INSPIRE].

  42. [42]

    F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [arXiv:0902.3250] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    R. Howl and S.F. King, Solving the flavour problem in supersymmetric Standard Models with three Higgs families, Phys. Lett. B 687 (2010) 355 [arXiv:0908.2067] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    P.M. Ferreira, W. Grimus, L. Lavoura and P.O. Ludl, Maximal CP-violation in lepton mixing from a model with Δ(27) flavour symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    E. Ma and A. Natale, Scotogenic Z 2 or U(1) D model of neutrino mass with Δ(27) symmetry, Phys. Lett. B 734 (2014) 403 [arXiv:1403.6772] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    P.F. Harrison, R. Krishnan and W.G. Scott, Deviations from tri-bi-maximal neutrino mixing using a model with Δ(27) symmetry, Int. J. Mod. Phys. A 29 (2014) 1450095 [arXiv:1406.2025] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  47. [47]

    M. Abbas and S. Khalil, Fermion masses and mixing in Δ(27) flavour model, Phys. Rev. D 91 (2015) 053003 [arXiv:1406.6716] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    I. de Medeiros Varzielas, Δ(27) family symmetry and neutrino mixing, JHEP 08 (2015) 157 [arXiv:1507.00338] [INSPIRE].

    Article  Google Scholar 

  49. [49]

    V.V. Vien, A.E. Cárcamo Hernández and H.N. Long, The Δ(27) flavor 3-3-1 model with neutral leptons, Nucl. Phys. B 913 (2016) 792 [arXiv:1601.03300] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. [50]

    A.E. Cárcamo Hernández, H.N. Long and V.V. Vien, A 3-3-1 model with right-handed neutrinos based on the Δ(27) family symmetry, Eur. Phys. J. C 76 (2016) 242 [arXiv:1601.05062] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    S.C. Chuliá, R. Srivastava and J.W.F. Valle, CP violation from flavor symmetry in a lepton quarticity dark matter model, Phys. Lett. B 761 (2016) 431 [arXiv:1606.06904] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models, NSF-ITP-82-07, (1981).

  53. [53]

    K.S. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242] [INSPIRE].

  54. [54]

    S.M. Barr and S. Raby, Minimal SO(10) unification, Phys. Rev. Lett. 79 (1997) 4748 [hep-ph/9705366] [INSPIRE].

  55. [55]

    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

  56. [56]

    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    F. Björkeroth and S.F. King, Testing constrained sequential dominance models of neutrinos, J. Phys. G 42 (2015) 125002 [arXiv:1412.6996] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4 × SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in minimal predictive seesaw models, JHEP 10 (2015) 104 [arXiv:1505.05504] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].

  61. [61]

    S.F. King, Invariant see-saw models and sequential dominance, Nucl. Phys. B 786 (2007) 52 [hep-ph/0610239] [INSPIRE].

  62. [62]

    I. de Medeiros Varzielas, Neutrino tri-bi-maximal mixing through sequential dominance, arXiv:0804.0015 [INSPIRE].

  63. [63]

    S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [INSPIRE].

  64. [64]

    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

  65. [65]

    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

  66. [66]

    A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].

  67. [67]

    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

  68. [68]

    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fredrik Björkeroth.

Additional information

ArXiv ePrint: 1609.05837

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Björkeroth, F., de Anda, F.J., de Medeiros Varzielas, I. et al. Leptogenesis in a Δ(27) × SO(10) SUSY GUT. J. High Energ. Phys. 2017, 77 (2017). https://doi.org/10.1007/JHEP01(2017)077

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • GUT
  • Neutrino Physics