Advertisement

Leptogenesis in a Δ(27) × SO(10) SUSY GUT

  • Fredrik BjörkerothEmail author
  • Francisco J. de Anda
  • Ivo de Medeiros Varzielas
  • Stephen F. King
Open Access
Regular Article - Theoretical Physics

Abstract

Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino N 1 due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making N 1 leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe Y B from flavoured N 1 leptogenesis in a recently proposed Δ(27) × SO(10) SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed Y B places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.

Keywords

Cosmology of Theories beyond the SM GUT Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].
  2. [2]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  5. [5]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].
  7. [7]
    W. Buchmüller and M. Plümacher, CP asymmetry in Majorana neutrino decays, Phys. Lett. B 431 (1998) 354 [hep-ph/9710460] [INSPIRE].
  8. [8]
    W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter-antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [Erratum ibid. B 793 (2008) 362] [hep-ph/0205349] [INSPIRE].
  9. [9]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  10. [10]
    A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].
  11. [11]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].
  12. [12]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  13. [13]
    H. Georgi, The state of the art — gauge theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE].
  16. [16]
    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, Nucl. Phys. B 856 (2012) 180 [arXiv:1003.5132] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Di Bari, L. Marzola and M. Re Fiorentin, Decrypting SO(10)-inspired leptogenesis, Nucl. Phys. B 893 (2015) 122 [arXiv:1411.5478] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P. Di Bari and M. Re Fiorentin, Supersymmetric SO(10)-inspired leptogenesis and a new N 2 -dominated scenario, JCAP 03 (2016) 039 [arXiv:1512.06739] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    P. Di Bari and S.F. King, Successful N 2 leptogenesis with flavour coupling effects in realistic unified models, JCAP 10 (2015) 008 [arXiv:1507.06431] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    A. Yu. Smirnov, Seesaw enhancement of lepton mixing, Phys. Rev. D 48 (1993) 3264 [hep-ph/9304205] [INSPIRE].
  21. [21]
    W. Buchmüller and M. Plümacher, Baryon asymmetry and neutrino mixing, Phys. Lett. B 389 (1996) 73 [hep-ph/9608308] [INSPIRE].
  22. [22]
    E. Nezri and J. Orloff, Neutrino oscillations versus leptogenesis in SO(10) models, JHEP 04 (2003) 020 [hep-ph/0004227] [INSPIRE].
  23. [23]
    F. Buccella, D. Falcone and F. Tramontano, Baryogenesis via leptogenesis in SO(10) models, Phys. Lett. B 524 (2002) 241 [hep-ph/0108172] [INSPIRE].
  24. [24]
    G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim and M.N. Rebelo, Leptogenesis, CP-violation and neutrino data: what can we learn?, Nucl. Phys. B 640 (2002) 202 [hep-ph/0202030] [INSPIRE].
  25. [25]
    E.K. Akhmedov, M. Frigerio and A. Yu. Smirnov, Probing the seesaw mechanism with neutrino data and leptogenesis, JHEP 09 (2003) 021 [hep-ph/0305322] [INSPIRE].
  26. [26]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  27. [27]
    S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].
  28. [28]
    F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [arXiv:0902.3250] [INSPIRE].ADSGoogle Scholar
  29. [29]
    B. Dutta, Y. Mimura and R.N. Mohapatra, An SO(10) grand unified theory of flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K.M. Patel, An SO(10) × S 4 × Z 4 model of quark-lepton complementarity, Phys. Lett. B 695 (2011) 225 [arXiv:1008.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with type II seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P.S. Bhupal Dev, B. Dutta, R.N. Mohapatra and M. Severson, θ 13 and proton decay in a minimal SO(10) × S 4 model of flavor, Phys. Rev. D 86 (2012) 035002 [arXiv:1202.4012] [INSPIRE].ADSGoogle Scholar
  33. [33]
    I. de Medeiros Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ 13, JHEP 12 (2012) 041 [arXiv:1203.6636] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].ADSGoogle Scholar
  35. [35]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSGoogle Scholar
  36. [36]
    H.M. Lee et al., A unique Z 4R symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    H.M. Lee et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys. B 850 (2011) 1 [arXiv:1102.3595] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    E. Ma, Neutrino mass matrix from Δ(27) symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [INSPIRE].
  39. [39]
    I. de Medeiros Varzielas, Neutrino tri-bi-maximal mixing from Δ(27), AIP Conf. Proc. 903 (2007) 397 [hep-ph/0610351] [INSPIRE].
  40. [40]
    E. Ma, Near tri-bi-maximal neutrino mixing with Δ(27) symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    I. de Medeiros Varzielas, Family symmetries and the origin of fermion masses and mixings, arXiv:0801.2775 [INSPIRE].
  42. [42]
    F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [arXiv:0902.3250] [INSPIRE].ADSGoogle Scholar
  43. [43]
    R. Howl and S.F. King, Solving the flavour problem in supersymmetric Standard Models with three Higgs families, Phys. Lett. B 687 (2010) 355 [arXiv:0908.2067] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P.M. Ferreira, W. Grimus, L. Lavoura and P.O. Ludl, Maximal CP-violation in lepton mixing from a model with Δ(27) flavour symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E. Ma and A. Natale, Scotogenic Z 2 or U(1)D model of neutrino mass with Δ(27) symmetry, Phys. Lett. B 734 (2014) 403 [arXiv:1403.6772] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P.F. Harrison, R. Krishnan and W.G. Scott, Deviations from tri-bi-maximal neutrino mixing using a model with Δ(27) symmetry, Int. J. Mod. Phys. A 29 (2014) 1450095 [arXiv:1406.2025] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Abbas and S. Khalil, Fermion masses and mixing in Δ(27) flavour model, Phys. Rev. D 91 (2015) 053003 [arXiv:1406.6716] [INSPIRE].ADSGoogle Scholar
  48. [48]
    I. de Medeiros Varzielas, Δ(27) family symmetry and neutrino mixing, JHEP 08 (2015) 157 [arXiv:1507.00338] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    V.V. Vien, A.E. Cárcamo Hernández and H.N. Long, The Δ(27) flavor 3-3-1 model with neutral leptons, Nucl. Phys. B 913 (2016) 792 [arXiv:1601.03300] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A.E. Cárcamo Hernández, H.N. Long and V.V. Vien, A 3-3-1 model with right-handed neutrinos based on the Δ(27) family symmetry, Eur. Phys. J. C 76 (2016) 242 [arXiv:1601.05062] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.C. Chuliá, R. Srivastava and J.W.F. Valle, CP violation from flavor symmetry in a lepton quarticity dark matter model, Phys. Lett. B 761 (2016) 431 [arXiv:1606.06904] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models, NSF-ITP-82-07, (1981).
  53. [53]
    K.S. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242] [INSPIRE].
  54. [54]
    S.M. Barr and S. Raby, Minimal SO(10) unification, Phys. Rev. Lett. 79 (1997) 4748 [hep-ph/9705366] [INSPIRE].
  55. [55]
    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].
  56. [56]
    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Björkeroth and S.F. King, Testing constrained sequential dominance models of neutrinos, J. Phys. G 42 (2015) 125002 [arXiv:1412.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4 × SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in minimal predictive seesaw models, JHEP 10 (2015) 104 [arXiv:1505.05504] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].
  61. [61]
    S.F. King, Invariant see-saw models and sequential dominance, Nucl. Phys. B 786 (2007) 52 [hep-ph/0610239] [INSPIRE].
  62. [62]
    I. de Medeiros Varzielas, Neutrino tri-bi-maximal mixing through sequential dominance, arXiv:0804.0015 [INSPIRE].
  63. [63]
    S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [INSPIRE].
  64. [64]
    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].
  65. [65]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].
  66. [66]
    A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].
  67. [67]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].
  68. [68]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Fredrik Björkeroth
    • 1
    Email author
  • Francisco J. de Anda
    • 2
  • Ivo de Medeiros Varzielas
    • 1
  • Stephen F. King
    • 1
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Departamento de FísicaCUCEI, Universidad de GuadalajaraGuadalajaraMéxico

Personalised recommendations