Massive three-loop form factor in the planar limit

  • Johannes Henn
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
  • Matthias Steinhauser
Open Access
Regular Article - Theoretical Physics


We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors F1 and F2 in the large-Nc limit. The analytic results are expressed in terms of Goncharov polylogarithms. This allows for a straightforward numerical evaluation. We also derive series expansions, including power suppressed terms, for three kinematic regions corresponding to small and large invariant masses of the photon momentum, and small velocities of the heavy quarks.


NLO Computations QCD Phenomenology 


  1. [1]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: the vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].
  2. [2]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: axial vector contributions, Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259] [INSPIRE].
  3. [3]
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: anomaly contributions, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190] [INSPIRE].
  4. [4]
    J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, JHEP 05 (2007) 001 [hep-ph/0612149] [INSPIRE].
  6. [6]
    A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three loop cusp anomalous dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    W. Bernreuther et al., QCD corrections to static heavy quark form-factors, Phys. Rev. Lett. 95 (2005) 261802 [hep-ph/0509341] [INSPIRE].
  11. [11]
    A.G. Grozin, P. Marquard, J.H. Piclum and M. Steinhauser, Three-loop chromomagnetic interaction in HQET, Nucl. Phys. B 789 (2008) 277 [arXiv:0707.1388] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop integrals for massive form factors, JHEP 12 (2016) 144 [arXiv:1611.06523] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(αα s) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
  16. [16]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].
  17. [17]
  18. [18]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating multiple polylogarithm values at sixth roots of unity up to weight six, arXiv:1512.08389 [INSPIRE].
  19. [19]
    A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    FIREFeynman Integral REduction software webpage,
  23. [23]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  24. [24]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  25. [25]
    P. Marquard, L. Mihaila, J.H. Piclum and M. Steinhauser, Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order, Nucl. Phys. B 773 (2007) 1 [hep-ph/0702185] [INSPIRE].
  26. [26]
    K. Melnikov and T. van Ritbergen, The three loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131] [INSPIRE].
  27. [27]
    G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].
  28. [28]
    R.A. Brandt, F. Neri and M.-A. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  30. [30]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  31. [31]
    J.P. Archambault and A. Czarnecki, Three-loop QCD corrections and b-quark decays, Phys. Rev. D 70 (2004) 074016 [hep-ph/0408021] [INSPIRE].
  32. [32]
    A.A. Penin, High-energy limit of quantum electrodynamics beyond Sudakov approximation, Phys. Lett. B 745 (2015) 69 [Erratum ibid. B 751 (2015) 596] [arXiv:1412.0671] [INSPIRE].
  33. [33]
    A.O.G. Kallen and A. Sabry, Fourth order vacuum polarization, Kong. Dan. Vid. Sel. Mat. Fys. Med. 29 (1955) 1 [INSPIRE].MathSciNetMATHGoogle Scholar
  34. [34]
    A. Czarnecki and K. Melnikov, Two loop QCD corrections to the heavy quark pair production cross-section in e + e annihilation near the threshold, Phys. Rev. Lett. 80 (1998) 2531 [hep-ph/9712222] [INSPIRE].
  35. [35]
    M. Beneke, A. Signer and V.A. Smirnov, Two loop correction to the leptonic decay of quarkonium, Phys. Rev. Lett. 80 (1998) 2535 [hep-ph/9712302] [INSPIRE].
  36. [36]
    A. Pineda and A. Signer, Heavy quark pair production near threshold with potential non-relativistic QCD, Nucl. Phys. B 762 (2007) 67 [hep-ph/0607239] [INSPIRE].
  37. [37]
    A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy quark vacuum polarization function at O(α s2) and O(α s3), Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at O(α s3), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    A. Messiah, Quantum mechanics, volume II, North Holland, The Netherlands (1965) [INSPIRE].
  40. [40]
    P. Marquard, J.H. Piclum, D. Seidel and M. Steinhauser, Three-loop matching of the vector current, Phys. Rev. D 89 (2014) 034027 [arXiv:1401.3004] [INSPIRE].ADSMATHGoogle Scholar
  41. [41]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].
  42. [42]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  43. [43]
    N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  45. [45]
    A.A. Penin and N. Zerf, Two-loop Bhabha scattering at high energy beyond leading power approximation, Phys. Lett. B 760 (2016) 816 [arXiv:1606.06344] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Johannes Henn
    • 1
  • Alexander V. Smirnov
    • 2
  • Vladimir A. Smirnov
    • 3
    • 4
  • Matthias Steinhauser
    • 4
  1. 1.PRISMA Cluster of ExcellenceJohannes Gutenberg UniversityMainzGermany
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia
  4. 4.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations