Supersymmetric AdS6 vacua in six-dimensional N = (1,1) gauged supergravity

Open Access
Regular Article - Theoretical Physics

Abstract

We study fully supersymmetric AdS6 vacua of half-maximal N = (1, 1) gauged supergravity in six space-time dimensions coupled to n vector multiplets. We show that the existence of AdS6 backgrounds requires that the gauge group is of the form G′ × G″ ⊂ SO(4, n) where G′ ⊂ SO(3, m) and G″ ⊂ SO(1, nm). In the AdS6 vacua this gauge group is broken to its maximal compact subgroup SO(3) × H × H″ where H′ ⊂ SO(m) and H″ ⊂ SO(nm). Furthermore, the SO(3) factor is the R-symmetry gauged by three of the four graviphotons. We further show that the AdS6 vacua have no moduli that preserve all supercharges. This is precisely in agreement with the absence of supersymmetric marginal deformations in holographically dual five-dimensional superconformal field theories.

Keywords

Supergravity Models AdS-CFT Correspondence Gauge-gravity correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of N = 4 SYM and type IIB supergravity on AdS 5 × S 5, JHEP 06 (2002) 039 [hep-th/0205090] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Kol, On conformal deformations, JHEP 09 (2002) 046 [hep-th/0205141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Louis and S. Lüst, Classification of maximally supersymmetric backgrounds in supergravity theories, arXiv:1607.08249 [INSPIRE].
  5. [5]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L.J. Romans, The F (4) Gauged Supergravity in Six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. D’Auria, S. Ferrara and S. Vaula, Matter coupled F (4) supergravity and the AdS 6 /CF T 5 correspondence, JHEP 10 (2000) 013 [hep-th/0006107] [INSPIRE].CrossRefMATHGoogle Scholar
  8. [8]
    L. Andrianopoli, R. D’Auria and S. Vaula, Matter coupled F (4) gauged supergravity Lagrangian, JHEP 05 (2001) 065 [hep-th/0104155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    P. Karndumri, Holographic RG flows in six dimensional F (4) gauged supergravity, JHEP 01 (2013) 134 [Erratum ibid. 06 (2015) 165] [arXiv:1210.8064] [INSPIRE].
  11. [11]
    S. de Alwis, J. Louis, L. McAllister, H. Triendl and A. Westphal, Moduli spaces in AdS 4 supergravity, JHEP 05 (2014) 102 [arXiv:1312.5659] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    J. Louis and H. Triendl, Maximally supersymmetric AdS 4 vacua in N = 4 supergravity, JHEP 10 (2014) 007 [arXiv:1406.3363] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Louis and S. Lüst, Supersymmetric AdS 7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120 [arXiv:1506.08040] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Louis, H. Triendl and M. Zagermann, \( \mathcal{N}=4 \) supersymmetric AdS 5 vacua and their moduli spaces, JHEP 10 (2015) 083 [arXiv:1507.01623] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Louis and C. Muranaka, Moduli spaces of AdS 5 vacua in \( \mathcal{N}=2 \) supergravity, JHEP 04 (2016) 178 [arXiv:1601.00482] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS 6 interpretation of 5D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS 6 duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Passias, A note on supersymmetric AdS 6 solutions of massive type IIA supergravity, JHEP 01 (2013) 113 [arXiv:1209.3267] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, JHEP 11 (2014) 099 [Erratum ibid. 05 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  21. [21]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6 Solutions of Type IIB Supergravity, Eur. Phys. J. C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, arXiv:1611.09411 [INSPIRE].
  23. [23]
    E.A. Bergshoeff, J. Gomis, T.A. Nutma and D. Roest, Kac-Moody Spectrum of (Half-)Maximal Supergravities, JHEP 02 (2008) 069 [arXiv:0711.2035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Karndumri, RG flows in 6D N = (1, 0) SCFT from SO(4) half-maximal 7D gauged supergravity, JHEP 06 (2014) 101 [arXiv:1404.0183] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Karndumri, Noncompact gauging of N = 2 7D supergravity and AdS/CFT holography, JHEP 02 (2015) 034 [arXiv:1411.4542] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.String Theory and Supergravity Group, Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Fachbereich Physik der Universität HamburgHamburgGermany
  3. 3.Zentrum für Mathematische PhysikUniversität HamburgHamburgGermany

Personalised recommendations