On the higher-spin spectrum in large N Chern-Simons vector models

  • S. Giombi
  • V. Gurucharan
  • V. Kirilin
  • S. Prakash
  • E. Skvortsov
Open Access
Regular Article - Theoretical Physics

Abstract

Chern-Simons gauge theories coupled to massless fundamental scalars or fermions define interesting non-supersymmetric 3d CFTs that possess approximate higher-spin symmetries at large N . In this paper, we compute the scaling dimensions of the higher-spin operators in these models, to leading order in the 1/N expansion and exactly in the ’t Hooft coupling. We obtain these results in two independent ways: by using conformal symmetry and the classical equations of motion to fix the structure of the current non-conservation, and by a direct Feynman diagram calculation. The full dependence on the ’t Hooft coupling can be restored by using results that follow from the weakly broken higher-spin symmetry. This analysis also allows us to obtain some explicit results for the non-conserved, parity-breaking structures that appear in planar three-point functions of the higher-spin operators. At large spin, we find that the anomalous dimensions grow logarithmically with the spin, in agreement with general expectations. This logarithmic behavior disappears in the strong coupling limit, where the anomalous dimensions turn into those of the critical O(N ) or Gross-Neveu models, in agreement with the conjectured 3d bosonization duality.

Keywords

1/N Expansion Chern-Simons Theories Conformal Field Theory Higher Spin Symmetry 

References

  1. [1]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A.J. Niemi and G.W. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    A.N. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions, Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, contributed article to Golfand’s Memorial Volume, M. Shifman eds., World Scientific [hep-th/9910096] [INSPIRE].
  8. [8]
    V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].
  9. [9]
    S. Giombi, TASI Lectures on the Higher Spin — CFT duality, arXiv:1607.02967 [INSPIRE].
  10. [10]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  14. [14]
    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  15. [15]
    S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].
  16. [16]
    P. Basu and C. Krishnan, ϵ-expansions near three dimensions from conformal field theory, JHEP 11 (2015) 040 [arXiv:1506.06616] [INSPIRE].
  17. [17]
    K. Sen and A. Sinha, On critical exponents without Feynman diagrams, J. Phys. A 49 (2016) 445401 [arXiv:1510.07770] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  18. [18]
    S. Ghosh, R.K. Gupta, K. Jaswin and A.A. Nizami, ϵ-Expansion in the Gross-Neveu model from conformal field theory, JHEP 03 (2016) 174 [arXiv:1510.04887] [INSPIRE].
  19. [19]
    A. Raju, ϵ-Expansion in the Gross-Neveu CFT, JHEP 10 (2016) 097 [arXiv:1510.05287] [INSPIRE].
  20. [20]
    A.N. Manashov and M. Strohmaier, Conformal constraints for anomalous dimensions of leading twist operators, Eur. Phys. J. C 75 (2015) 363 [arXiv:1503.04670] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E.D. Skvortsov, On (Un)Broken Higher-Spin Symmetry in Vector Models, arXiv:1512.05994 [INSPIRE].
  22. [22]
    S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin symmetry, JHEP 11 (2016) 068 [arXiv:1601.01310] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Hikida, The masses of higher spin fields on AdS 4 and conformal perturbation theory, Phys. Rev. D 94 (2016) 026004 [arXiv:1601.01784] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Dey, A. Kaviraj and K. Sen, More on analytic bootstrap for O(N) models, JHEP 06 (2016) 136 [arXiv:1602.04928] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    V. Bashmakov, M. Bertolini and H. Raj, Broken current anomalous dimensions, conformal manifolds and RG flows, arXiv:1609.09820 [INSPIRE].
  26. [26]
    V. Bashmakov, M. Bertolini, L. Di Pietro and H. Raj, Scalar Multiplet Recombination at Large-N and Holography, JHEP 05 (2016) 183 [arXiv:1603.00387] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    K. Nii, Classical equation of motion and Anomalous dimensions at leading order, JHEP 07 (2016) 107 [arXiv:1605.08868] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, arXiv:1609.00572 [INSPIRE].
  29. [29]
    Y. Hikida and T. Wada, Anomalous dimensions of higher spin currents in large-N CFTs, arXiv:1610.05878 [INSPIRE].
  30. [30]
    A.N. Manashov and E.D. Skvortsov, Higher-spin currents in the Gross-Neveu model at 1/n 2, arXiv:1610.06938 [INSPIRE].
  31. [31]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083 [arXiv:1502.01437] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    L.F. Alday and A. Zhiboedov, Conformal Bootstrap With Slightly Broken Higher Spin Symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large-N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    G. Gur-Ari and R. Yacoby, Correlators of Large-N Fermionic Chern-Simons Vector Models, JHEP 02 (2013) 150 [arXiv:1211.1866] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    K. Lang and W. Rühl, The Critical O(N) σ-model at dimensions 2 < d < 4: Fusion coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    T. Muta and D.S. Popovic, Anomalous Dimensions of Composite Operators in the Gross-Neveu Model in Two + Epsilon Dimensions, Prog. Theor. Phys. 57 (1977) 1705 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    D. Radičević, Disorder Operators in Chern-Simons-Fermion Theories, JHEP 03 (2016) 131 [arXiv:1511.01902] [INSPIRE].ADSGoogle Scholar
  45. [45]
    W. Chen, G.W. Semenoff and Y.-S. Wu, Two loop analysis of nonAbelian Chern-Simons theory, Phys. Rev. D 46 (1992) 5521 [hep-th/9209005] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group Level Duality in WZW Models and Chern-Simons Theory, Phys. Lett. B 246 (1990) 417 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    E.J. Mlawer, S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality of WZW fusion coefficients and Chern-Simons link observables, Nucl. Phys. B 352 (1991) 863 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    M. Camperi, F. Levstein and G. Zemba, The Large-N Limit of Chern-Simons Gauge Theory, Phys. Lett. B 247 (1990) 549 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large-N Chern-Simons-Matter Theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia and S. Yokoyama, Phases of large-N vector Chern-Simons theories on S 2 × S 1, JHEP 09 (2013) 009 [arXiv:1301.6169] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Takimi, Duality and higher temperature phases of large-N Chern-Simons matter theories on S 2 × S 1, JHEP 07 (2013) 177 [arXiv:1304.3725] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large-N Chern-Simons theories with fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Moshe and J. Zinn-Justin, 3D Field Theories with Chern-Simons Term for Large-N in the Weyl Gauge, JHEP 01 (2015) 054 [arXiv:1410.0558] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    A. Bedhotiya and S. Prakash, A test of bosonization at the level of four-point functions in Chern-Simons vector models, JHEP 12 (2015) 032 [arXiv:1506.05412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP 11 (2015) 013 [arXiv:1507.04378] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    M. Geracie, M. Goykhman and D.T. Son, Dense Chern-Simons Matter with Fermions at Large-N , JHEP 04 (2016) 103 [arXiv:1511.04772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    S. Minwalla and S. Yokoyama, Chern Simons Bosonization along RG Flows, JHEP 02 (2016) 103 [arXiv:1507.04546] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Yokoyama, Scattering Amplitude and Bosonization Duality in General Chern-Simons Vector Models, JHEP 09 (2016) 105 [arXiv:1604.01897] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, arXiv:1606.01912 [INSPIRE].
  64. [64]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2+1 Dimensions and Condensed Matter Physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and Mirror Symmetry, Phys. Rev. D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].ADSGoogle Scholar
  66. [66]
    D. Radičević, D. Tong and C. Turner, Non-abelian 3D bosonization and quantum Hall states, JHEP 12 (2016) 067 [arXiv:1608.04732] [INSPIRE].Google Scholar
  67. [67]
    P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Banerjee and D. Radičević, Chern-Simons theory coupled to bifundamental scalars, JHEP 06 (2014) 168 [arXiv:1308.2077] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    V. Gurucharan and S. Prakash, Anomalous dimensions in non-supersymmetric bifundamental Chern-Simons theories, JHEP 09 (2014) 009 [arXiv:1404.7849] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    L. Girardello, M. Porrati and A. Zaffaroni, 3-D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS, Phys. Lett. B 561 (2003) 289 [hep-th/0212181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  73. [73]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].ADSGoogle Scholar
  74. [74]
    N.S. Craigie, V.K. Dobrev and I.T. Todorov, Conformally Covariant Composite Operators in Quantum Chromodynamics, Annals Phys. 159 (1985) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A.V. Belitsky, J. Henn, C. Jarczak, D. Mueller and E. Sokatchev, Anomalous dimensions of leading twist conformal operators, Phys. Rev. D 77 (2008) 045029 [arXiv:0707.2936] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    D. Anselmi, The N = 4 quantum conformal algebra, Nucl. Phys. B 541 (1999) 369 [hep-th/9809192] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    W. Rühl, The Goldstone fields of interacting higher spin field theory on AdS 4, hep-th/0607197 [INSPIRE].
  79. [79]
    S. Giombi, S. Prakash and X. Yin, A Note on CFT Correlators in Three Dimensions, JHEP 07 (2013) 105 [arXiv:1104.4317] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • S. Giombi
    • 1
  • V. Gurucharan
    • 2
  • V. Kirilin
    • 1
    • 5
  • S. Prakash
    • 2
  • E. Skvortsov
    • 3
    • 4
  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  2. 2.Department of Physics and Computer ScienceDayalbagh Educational InstituteDayalbaghIndia
  3. 3.Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilians University MunichMunichGermany
  4. 4.Lebedev Institute of PhysicsMoscowRussia
  5. 5.ITEPMoscowRussia

Personalised recommendations