Advertisement

Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

  • Bum-Hoon Lee
  • Daeho Ro
  • Hyun Seok YangEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study localization of five-dimensional supersymmetric U(1) gauge theory on \( {\mathbb{S}}^3\times {\mathbb{R}}_{\theta}^2 \) where \( {\mathbb{R}}_{\theta}^2 \) is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N → ∞) gauge theory on \( {\mathbb{S}}^3 \) using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space \( {\mathbb{R}}_{\theta}^2 \) allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

Keywords

Supersymmetric gauge theory Duality in Gauge Field Theories Matrix Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H.S. Yang, Emergent gravity from noncommutative spacetime, Int. J. Mod. Phys. A 24 (2009) 4473 [hep-th/0611174] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H.S. Yang, Emergent spacetime and the origin of gravity, JHEP 05 (2009) 012 [arXiv:0809.4728] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H.S. Yang, Quantization of emergent gravity, Int. J. Mod. Phys. A 30 (2015) 1550016 [arXiv:1312.0580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Konechny and A.S. Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept. 360 (2002) 353 [hep-th/0012145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J.A. Minahan, A. Nedelin and M. Zabzine, 5D super Yang-Mills theory and the correspondence to AdS 7 /CFT 6, J. Phys. A 46 (2013) 355401 [arXiv:1304.1016] [INSPIRE].zbMATHGoogle Scholar
  9. [9]
    H.S. Yang, Highly effective action from large-N gauge fields, Phys. Rev. D 90 (2014) 086006 [arXiv:1402.5134] [INSPIRE].ADSGoogle Scholar
  10. [10]
    V. Pestun et al., Localization techniques in quantum field theories, arXiv:1608.02952 [INSPIRE].
  11. [11]
    V. Pestun and M. Zabzine, Introduction to localization in quantum field theory, arXiv:1608.02953 [INSPIRE].
  12. [12]
    V. Pestun, Review of localization in geometry, arXiv:1608.02954 [INSPIRE].
  13. [13]
    F. Benini and B. Le Floch, Supersymmetric localization in two dimensions, arXiv:1608.02955 [INSPIRE].
  14. [14]
    D.R. Morrison, Gromov-Witten invariants and localization, arXiv:1608.02956 [INSPIRE].
  15. [15]
    T.T. Dumitrescu, An introduction to supersymmetric field theories in curved space, arXiv:1608.02957 [INSPIRE].
  16. [16]
    B. Willett, Localization on three-dimensional manifolds, arXiv:1608.02958 [INSPIRE].
  17. [17]
    M. Mariño, Localization at large-N in Chern-Simons-matter theories, arXiv:1608.02959 [INSPIRE].
  18. [18]
    S.S. Pufu, The F-theorem and F-maximization, arXiv:1608.02960 [INSPIRE].
  19. [19]
    T. Dimofte, Perturbative and nonperturbative aspects of complex Chern-Simons theory, arXiv:1608.02961 [INSPIRE].
  20. [20]
    K. Hosomichi, N = 2 SUSY gauge theories on S 4, arXiv:1608.02962 [INSPIRE].
  21. [21]
    K. Zarembo, Localization and AdS/CFT correspondence, arXiv:1608.02963 [INSPIRE].
  22. [22]
    Y. Tachikawa, A brief review of the 2d/4d correspondences, arXiv:1608.02964 [INSPIRE].
  23. [23]
    L. Rastelli and S.S. Razamat, The supersymmetric index in four dimensions, arXiv:1608.02965 [INSPIRE].
  24. [24]
    J. Qiu and M. Zabzine, Review of localization for 5d supersymmetric gauge theories, arXiv:1608.02966 [INSPIRE].
  25. [25]
    J.A. Minahan, Matrix models for 5d super Yang-Mills, arXiv:1608.02967 [INSPIRE].
  26. [26]
    S. Pasquetti, Holomorphic blocks and the 5d AGT correspondence, arXiv:1608.02968 [INSPIRE].
  27. [27]
    S. Kim and K. Lee, Indices for 6 dimensional superconformal field theories, arXiv:1608.02969 [INSPIRE].
  28. [28]
    T. Kawano and N. Matsumiya, 5D SYM on 3D sphere and 2D YM, Phys. Lett. B 716 (2012) 450 [arXiv:1206.5966] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    Y. Fukuda, T. Kawano and N. Matsumiya, 5D SYM and 2D q-deformed YM, Nucl. Phys. B 869 (2013) 493 [arXiv:1210.2855] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    T. Kawano and N. Matsumiya, 5D SYM on 3D deformed spheres, Nucl. Phys. B 898 (2015) 456 [arXiv:1505.06565] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric gauge theories on the five-sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    E. Witten, Supersymmetric Yang-Mills theory on a four manifold, J. Math. Phys. 35 (1994) 5101 [hep-th/9403195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, A first order deconfinement transition in large-N Yang-Mills theory on a small S 3, Phys. Rev. D 71 (2005) 125018 [hep-th/0502149] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].ADSzbMATHGoogle Scholar
  37. [37]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  38. [38]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    Y. Imamura, Relation between the 4d superconformal index and the S 3 partition function, JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y. Asano, G. Ishiki, T. Okada and S. Shimasaki, Large-N reduction for N = 2 quiver Chern-Simons theories on S 3 and localization in matrix models, Phys. Rev. D 85 (2012) 106003 [arXiv:1203.0559] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Honda and Y. Yoshida, Localization and large-N reduction on S 3 for the planar and M-theory limit, Nucl. Phys. B 865 (2012) 21 [arXiv:1203.1016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    H.S. Yang, Emergent spacetime and cosmic inflation I & II, arXiv:1503.00712 [INSPIRE].
  46. [46]
    M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    N.P. Buchdahl, Instantons on CP 2, J. Diff. Geom. 24 (1986) 19.zbMATHGoogle Scholar
  48. [48]
    H.S. Yang and M. Salizzoni, Gravitational instantons from gauge theory, Phys. Rev. Lett. 96 (2006) 201602 [hep-th/0512215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    H.S. Yang, Instantons and emergent geometry, Europhys. Lett. 88 (2009) 31002 [hep-th/0608013] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H.S. Yang, Noncommutative electromagnetism as a large-N gauge theory, Eur. Phys. J. C 64 (2009) 445 [arXiv:0704.0929] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    H.S. Yang, Calabi-Yau manifolds from noncommutative Hermitian U(1) instantons, Phys. Rev. D 91 (2015) 104002 [arXiv:1411.6115] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    G. Ishiki, Y. Takayama and A. Tsuchiya, N = 4 SYM on R × S 3 and theories with 16 supercharges, JHEP 10 (2006) 007 [hep-th/0605163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    H. Nishino and S. Rajpoot, Noncommutative supersymmetric Yang-Mills theory in ten-dimensions with higher derivative terms, Phys. Rev. D 65 (2002) 085005 [hep-th/0108154] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of PhysicsSogang UniversitySeoulKorea
  2. 2.Asia Pacific Center for Theoretical Physics, POSTECHPohangKorea
  3. 3.Center for Quantum SpacetimeSogang UniversitySeoulKorea

Personalised recommendations