Advertisement

Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC

  • Benedikt Biedermann
  • Ansgar Denner
  • Stefan Dittmaier
  • Lars Hofer
  • Barbara Jäger
Open Access
Regular Article - Theoretical Physics

Abstract

We present a state-of-the-art calculation of the next-to-leading-order electroweak corrections to ZZ production, including the leptonic decays of the Z bosons into μ + μ e+e or μ + μ μ + μ final states. We use complete leading-order and next-to-leading-order matrix elements for four-lepton production, including contributions of virtual photons and all off-shell effects of Z bosons, where the finite Z-boson width is taken into account using the complex-mass scheme. The matrix elements are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential distributions. We present integrated and differential cross sections for the LHC at 13 TeV both for an inclusive setup where only lepton identification cuts are applied, and for a setup motivated by Higgs-boson analyses in the four-lepton decay channel. The electroweak corrections are divided into photonic and purely weak contributions. The former show the well-known pronounced tails near kinematical thresholds and resonances; the latter are generically at the level of ∼ −5% and reach several −10% in the high-energy tails of distributions. Comparing the results for μ + μ e+e and μ + μ μ + μ final states, we find significant differences mainly in distributions that are sensitive to the μ + μ pairing in the μ + μ μ + μ final state. Differences between μ + μ e+e and μ + μ μ + μ channels due to interferences of equal-flavour leptons in the final state can reach up to 10% in off-shell-sensitive regions. Contributions induced by incoming photons, i.e. photon-photon and quark-photon channels, are included, but turn out to be phenomenologically unimportant.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Measurements of four-lepton production at the Z resonance in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with ATLAS, Phys. Rev. Lett. 112 (2014) 231806 [arXiv:1403.5657] [INSPIRE].
  2. [2]
    CMS collaboration, Measurement of the ZZ production cross section and search for anomalous couplings in 22final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 063 [arXiv:1211.4890] [INSPIRE].
  3. [3]
    CMS collaboration, Measurement of W + W and ZZ production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurement of the ZZ production cross section in pp collisions at \( \sqrt{s}=8 \) TeV using the ZZ + + and \( ZZ\to {\ell}^{-}{\ell}^{+}\nu \overline{\nu} \) channels with the ATLAS detector, arXiv:1610.07585 [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of ZZ production in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, JHEP 03 (2013) 128 [arXiv:1211.6096] [INSPIRE].
  6. [6]
    CMS collaboration, Measurement of the ppZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 740 (2015) 250 [arXiv:1406.0113] [INSPIRE].
  7. [7]
    CMS collaboration, Measurements of the ZZ production cross sections in the 22ν channel in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV and combined constraints on triple gauge couplings, Eur. Phys. J. C 75 (2015) 511 [arXiv:1503.05467] [INSPIRE].
  8. [8]
    ATLAS collaboration, Measurement of the ZZ production cross section in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 116 (2016) 101801 [arXiv:1512.05314] [INSPIRE].
  9. [9]
    CMS collaboration, Measurement of the ZZ production cross section and Z + + branching fraction in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 763 (2016) 280 [arXiv:1607.08834] [INSPIRE].
  10. [10]
    J. Ohnemus and J.F. Owens, Order-α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].ADSGoogle Scholar
  11. [11]
    JB. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].
  12. [12]
    JJ. Ohnemus, Hadronic ZZ, W W + and W ± Z production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931 [hep-ph/9403331] [INSPIRE].
  13. [13]
    JL.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].
  14. [14]
    JJ.M. Campbell and R.K. Ellis, Update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  15. [15]
    JL.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at O(α s): lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].
  16. [16]
    JD.A. Dicus, C. Kao and W.W. Repko, Gluon production of gauge bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].
  17. [17]
    JE.W.N. Glover and J.J. van der Bij, Z-boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].
  18. [18]
    JT. Matsuura and J.J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].
  19. [19]
    C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].
  20. [20]
    JT. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to \ell \overline{\ell}\ell^{\prime}\overline{\ell}^{\prime } \), in Proceedings of the 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), London U.K. (2008), pg. 142 [arXiv:0807.0024] [INSPIRE].
  21. [21]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].
  22. [22]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    T. Melia, P. Nason, R. Röntsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Cascioli et al., Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO, JHEP 08 (2015) 154 [arXiv:1507.02565] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].ADSGoogle Scholar
  31. [31]
    F. Caola, M. Dowling, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC, JHEP 07 (2016) 087 [arXiv:1605.04610] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Alioli, F. Caola, G. Luisoni and R. Röntsch, ZZ production in gluon fusion at NLO matched to parton-shower, arXiv:1609.09719 [INSPIRE].
  33. [33]
    W. Beenakker, A. Denner, S. Dittmaier, R. Mertig and T. Sack, High-energy approximation for on-shell W-pair production, Nucl. Phys. B 410 (1993) 245 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Beccaria, G. Montagna, F. Piccinini, F.M. Renard and C. Verzegnassi, Rising bosonic electroweak virtual effects at high energy e + e colliders, Phys. Rev. D 58 (1998) 093014 [hep-ph/9805250] [INSPIRE].
  35. [35]
    P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].
  36. [36]
    J.H. Kühn and A.A. Penin, Sudakov logarithms in electroweak processes, hep-ph/9906545 [INSPIRE].
  37. [37]
    V.S. Fadin, L.N. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [INSPIRE].
  38. [38]
    A. Denner and S. Pozzorini, One-loop leading logarithms in electroweak radiative corrections. I. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].
  39. [39]
    E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].
  40. [40]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Billoni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to ppW + W 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Gieseke, T. Kasprzik and J.H. Kühn, Vector-boson pair production and electroweak corrections in HERWIG++, Eur. Phys. J. C 74 (2014) 2988 [arXiv:1401.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B. Biedermann et al., Next-to-leading-order electroweak corrections to ppW + W 4 leptons at the LHC, JHEP 06 (2016) 065 [arXiv:1605.03419] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to ppμ + μ e + e + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803 [arXiv:1601.07787] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  47. [47]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  48. [48]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  49. [49]
    O. Piguet, Construction of a strictly renormalizable effective Lagrangian for the massive Abelian Higgs model, Commun. Math. Phys. 37 (1974) 19 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    J.C. Collins, Renormalization: an introduction to renormalization, the renormalization group, and the operator product expansion, vol. 26 of Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1986) [INSPIRE].
  51. [51]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  52. [52]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  53. [53]
    ATLAS collaboration, Measurement of the transverse momentum distribution of Z/γ * bosons in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].
  54. [54]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the standard model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    S. Actis et al., RECOLA: REcursive Computation of One-Loop Amplitudes, arXiv:1605.01090 [INSPIRE].
  57. [57]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  58. [58]
    E. Accomando, A. Denner and C. Meier, Electroweak corrections to Wγ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].
  59. [59]
    J. Küblbeck, M. Böhm and A. Denner, Feyn Artscomputer-algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  61. [61]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  62. [62]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Complete electroweak O(α) corrections to charged-current e + e 4 fermion processes, Phys. Lett. B 612 (2005) 223 [Erratum ibid. B 704 (2011) 667] [hep-ph/0502063] [INSPIRE].
  63. [63]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].
  65. [65]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  66. [66]
    W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. Phys. B 338 (1990) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Denner, U. Nierste and R. Scharf, A compact expression for the scalar one-loop four-point function, Nucl. Phys. B 367 (1991) 637 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    F.A. Berends, R. Pittau and R. Kleiss, All electroweak four fermion processes in electron-positron collisions, Nucl. Phys. B 424 (1994) 308 [hep-ph/9404313] [INSPIRE].
  70. [70]
    S. Dittmaier and M. Roth, LUSIFER: a LUcid approach to SIx-FERmion production, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070] [INSPIRE].
  71. [71]
    T. Motz, Generic Monte Carlo event generator for NLO processes, Dissertation, Universität Zürich (2011).Google Scholar
  72. [72]
    D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy-dependent width effects in e + e -annihilation near the Z-boson pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Denner, Techniques for the calculation of electroweak radiative corrections at the one-loop level and results for W-physics at LEP 200, Fortschr. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].Google Scholar
  74. [74]
    S. Dittmaier and M. Krämer, Electroweak radiative corrections to W-boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].
  75. [75]
    J. Butterworth et al., Les Houches 2013: Physics at TeV Colliders. Standard Model Working Group report, arXiv:1405.1067 [INSPIRE].
  76. [76]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  77. [77]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon PDF, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    K.P.O. Diener, S. Dittmaier and W. Hollik, Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev. D 72 (2005) 093002 [hep-ph/0509084] [INSPIRE].
  79. [79]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012006 [arXiv:1408.5191] [INSPIRE].
  80. [80]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  81. [81]
    A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays, JHEP 02(2016) 057[arXiv:1510.08742] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HWW/ZZ4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].
  83. [83]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for HWW/ZZ4 fermions with PROPHECY4f, in Proceedings of the International Linear Collider Workshop (LCWS07 and ILC07), Hamburg Germany, 30 May–3 Jun 2007, vol. 1–2, pp. 150–154 [arXiv:0708.4123] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institut für Theoretische Physik und AstrophysikJulius-Maximilians-Universität WürzburgWürzburgGermany
  2. 2.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.Institut de Ciències del Cosmo (ICCUB), Departament de Física Quàntica i Astrofísica (FQA)Universitat de Barcelona (UB)BarcelonaSpain
  4. 4.Institut für Theoretische PhysikEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations