Advertisement

Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals

  • Carlos R. MafraEmail author
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics

Abstract

We present a recursive method to calculate the α -expansion of disk integrals arising in tree-level scattering of open strings which resembles the approach of Berends and Giele to gluon amplitudes. Following an earlier interpretation of disk integrals as doubly partial amplitudes of an effective theory of scalars dubbed as Z-theory, we pinpoint the equation of motion of Z-theory from the Berends-Giele recursion for its tree amplitudes. A computer implementation of this method including explicit results for the recursion up to order α 7 is made available on the website http://repo.or.cz/BGap.git.

Keywords

Effective field theories Superspaces Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.J. Gross and E. Witten, Superstring modifications of Einsteins equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C.R. Mafra, Berends-Giele recursion for double-color-ordered amplitudes, JHEP 07 (2016) 080 [arXiv:1603.09731] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple Zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α -expansion of superstring trees from the Drinfeld associator, Phys. Rev. D 89 (2014) 066014 [arXiv:1304.7304] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α -corrections from the open string, arXiv:1608.02569 [INSPIRE].
  8. [8]
    K.G. Selivanov, Postclassicism in tree amplitudes, hep-th/9905128.
  9. [9]
    S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    W.A. Bardeen, Selfdual Yang-Mills theory, integrability and multiparton amplitudes, Prog. Theor. Phys. Suppl. 123 (1996) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  12. [12]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    R.R. Metsaev, M. Rakhmanov and A.A. Tseytlin, The Born-Infeldll action as the effective action in the open superstring theory, Phys. Lett. B 193 (1987) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.A. Cronin, Phenomenological model of strong and weak interactions in chiral U(3) × U(3), Phys. Rev. 161 (1967) 1483 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Weinberg, Dynamical approach to current algebra, Phys. Rev. Lett. 18 (1967) 188 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.S. Brown, Field theory of chiral symmetry, Phys. Rev. 163 (1967) 1802 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Chang and F. Gursey, Unified formulation of effective nonlinear pion-nucleon lagrangians, Phys. Rev. 164 (1967) 1752 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L. Susskind and G. Frye, Algebraic aspects of pionic duality diagrams, Phys. Rev. D 1 (1970) 1682 [INSPIRE].ADSGoogle Scholar
  25. [25]
    H. Osborn, Implications of adler zeros for multipion processes, Lett. Nuovo Cim. 2S1 (1969) 717 [INSPIRE].
  26. [26]
    J.R. Ellis and B. Renner, On the relationship between chiral and dual models, Nucl. Phys. B 21 (1970) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Kampf, J. Novotny and J. Trnka, Tree-level amplitudes in the nonlinear σ-model, JHEP 05 (2013) 032 [arXiv:1304.3048] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.B. Green and M. Gutperle, Symmetry breaking at enhanced symmetry points, Nucl. Phys. B 460 (1996) 77 [hep-th/9509171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
  30. [30]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Ree, Lie elements and an algebra associated with shuffles, Ann. Math. 62 (1958) 210.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Schocker, Lie elements and Knuth relations, Canad. J. Math. 56 (2004), [math/0209327].
  33. [33]
    C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs, London U.K. (1993).Google Scholar
  34. [34]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
  36. [36]
    P. Tourkine and P. Vanhove, Higher-loop amplitude monodromy relations in string and gauge theory, Phys. Rev. Lett. 117 (2016) 211601 [arXiv:1608.01665] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  38. [38]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM N -point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  40. [40]
    L.A. Barreiro and R. Medina, RNS derivation of N -point disk amplitudes from the revisited S-matrix approach, Nucl. Phys. B 886 (2014) 870 [arXiv:1310.5942] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367] [INSPIRE].ADSzbMATHGoogle Scholar
  43. [43]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Y.-T. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155 [arXiv:1602.01674] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Puhlfürst and S. Stieberger, Differential equations, associators and recurrences for amplitudes, Nucl. Phys. B 902 (2016) 186 [arXiv:1507.01582] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S. Stieberger, Constraints on tree-level higher order gravitational couplings in superstring theory, Phys. Rev. Lett. 106 (2011) 111601 [arXiv:0910.0180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    O. Schlotterer and S. Stieberger, Motivic multiple Zeta values and superstring amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    K. Aomoto, Special values of hyperlogarithms and linear difference schemes, Illinois J. Math. 34 (1990) 191.MathSciNetzbMATHGoogle Scholar
  49. [49]
    T. Terasoma, Selberg integrals and multiple Zeta values, Comp. Math. 133 (2002) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    F.C.S. Brown, Multiple Zeta values and periods of moduli spaces M 0,n, Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].
  51. [51]
    R. Medina, F.T. Brandt and F.R. Machado, The open superstring five point amplitude revisited, JHEP 07 (2002) 071 [hep-th/0208121] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L.A. Barreiro and R. Medina, 5-field terms in the open superstring effective action, JHEP 03 (2005) 055 [hep-th/0503182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042.
  54. [54]
    S. Stieberger and T.R. Taylor, Multi-gluon scattering in open superstring theory, Phys. Rev. D 74 (2006) 126007 [hep-th/0609175] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J.M. Drummond and É. Ragoucy, Superstring amplitudes and the associator, JHEP 08 (2013) 135 [arXiv:1301.0794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    J. Broedel, O. Schlotterer and S. Stieberger, http://mzv.mpp.mpg.de.
  57. [57]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A.A. Rosly and K.G. Selivanov, On amplitudes in selfdual sector of Yang-Mills theory, Phys. Lett. B 399 (1997) 135 [hep-th/9611101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    A.A. Rosly and K.G. Selivanov, Gravitational SD perturbiner, hep-th/9710196.
  60. [60]
    F. Chapoton, The anticyclic operad of moulds, Internationational Mathematics Research Notices (2007) [math/0609436].
  61. [61]
    S. Stieberger and T.R. Taylor, Closed string amplitudes as single-valued open string amplitudes, Nucl. Phys. B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    G. Griffing, Dual Lie elements and a derivation for the cofree coassociative coalgebra, Proc. Amer. Math.. Soc. 123 (1995) 3269.MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    J.-Y. Thibon, Lie idempotents in descent algebras, workshop on Hopf Algebras and Props, March 5-9, Boston, U.S.A. (2007).Google Scholar
  64. [64]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C.R. Mafra, Pure spinor superspace identities for massless four-point kinematic factors, JHEP 04 (2008) 093 [arXiv:0801.0580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925 [arXiv:0804.1660] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    C. Bogner and F. Brown, Symbolic integration and multiple polylogarithms, PoS (LL2012) 053 [arXiv:1209.6524] [INSPIRE].
  68. [68]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    E. Panzer, Feynman integrals and hyperlogarithms, arXiv:1506.07243 [INSPIRE].
  70. [70]
    C. Bogner and F. Brown, Feynman integrals and iterated integrals on moduli spaces of curves of genus zero, Commun. Num. Theor. Phys. 09 (2015) 189 [arXiv:1408.1862] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    C. Bogner, MPLA program for computations with iterated integrals on moduli spaces of curves of genus zero, Comput. Phys. Commun. 203 (2016) 339 [arXiv:1510.04562] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
  74. [74]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    J. Ablinger, J. Blümlein and C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    J. Ablinger and J. Blümlein, Harmonic sums, polylogarithms, special numbers and their generalizations, arXiv:1304.7071 [INSPIRE].
  77. [77]
    S. Stieberger and T.R. Taylor, Superstring amplitudes as a mellin transform of supergravity, Nucl. Phys. B 873 (2013) 65 [arXiv:1303.1532] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    J. Cresson, Calcul Moulien, math/0509548.
  79. [79]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  80. [80]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  81. [81]
    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    F. Brown, Single-valued motivic periods and multiple Zeta values, SIGMA 2 (2014) e25 [arXiv:1309.5309] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  83. [83]
    S. Stieberger, Closed superstring amplitudes, single-valued multiple Zeta values and the Deligne associator, J. Phys. A 47 (2014) 155401 [arXiv:1310.3259] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  84. [84]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, to appear.Google Scholar
  85. [85]
    B. Enriquez, Analogues elliptiques des nombres multizetas, to appear in Bull. Soc. Math. France [arXiv:1301.3042].
  86. [86]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple Zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    J. Broedel, N. Matthes and O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra, J. Phys. A 49 (2016) 155203 [arXiv:1507.02254] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  88. [88]
    E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one Type II superstring low energy expansion, JHEP 08 (2015) 041 [arXiv:1502.06698] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  89. [89]
    E. D’Hoker, M.B. Green and P. Vanhove, Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus, arXiv:1509.00363 [INSPIRE].
  90. [90]
    A. Basu, Poisson equation for the Mercedes diagram in string theory at genus one, Class. Quant. Grav. 33 (2016) 055005 [arXiv:1511.07455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    E. D’Hoker, M.B. Green, O. Gurdogan and P. Vanhove, Modular graph functions, arXiv:1512.06779 [INSPIRE].
  92. [92]
    E. D’Hoker and M.B. Green, Identities between modular graph forms, arXiv:1603.00839 [INSPIRE].
  93. [93]
    A. Basu, Poisson equation for the three loop ladder diagram in string theory at genus one, Int. J. Mod. Phys. A 31 (2016) 1650169 [arXiv:1606.02203] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A. Basu, Proving relations between modular graph functions, Class. Quant. Grav. 33 (2016) 235011 [arXiv:1606.07084] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Basu, Simplifying the one loop five graviton amplitude in type IIB string theory, arXiv:1608.02056 [INSPIRE].
  96. [96]
    E. D’Hoker and J. Kaidi, Hierarchy of modular graph identities, JHEP 11 (2016) 051 [arXiv:1608.04393] [INSPIRE].CrossRefGoogle Scholar
  97. [97]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    C. Cheung, D. O’Connell and B. Wecht, BCFW recursion relations and string theory, JHEP 09 (2010) 052 [arXiv:1002.4674].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  100. [100]
    R.H. Boels, D. Marmiroli and N.A. Obers, On-shell recursion in string theory, JHEP 10 (2010) 034 [arXiv:1002.5029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  101. [101]
    C.D. White, Exact solutions for the biadjoint scalar field, Phys. Lett. B 763 (2016) 365 [arXiv:1606.04724] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    S.J. Gates, Jr. and S. Vashakidze, On D = 10, N = 1 supersymmetry, superspace geometry and superstring effects, Nucl. Phys. B 291 (1987) 172 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, The structure of maximally supersymmetric Yang-Mills theory: constraining higher order corrections, JHEP 06 (2001) 034 [hep-th/0102009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  104. [104]
    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, D = 10 super Yang-Mills at O(α ′2), JHEP 07 (2001) 042 [hep-th/0104236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology of Abelian D = 10 super Yang-Mills at O(α ′3), JHEP 11 (2002) 023 [hep-th/0205165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    N. Berkovits and P.S. Howe, The cohomology of superspace, pure spinors and invariant integrals, JHEP 06 (2008) 046 [arXiv:0803.3024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    P.S. Howe, U. Lindström and L. Wulff, D = 10 supersymmetric Yang-Mills theory at α ′4, JHEP 07 (2010) 028 [arXiv:1004.3466] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  108. [108]
    J. Blumlein, D.J. Broadhurst and J.A.M. Vermaseren, The multiple zeta value data mine, Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  109. [109]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  110. [110]
    R.H. Boels, On the field theory expansion of superstring five point amplitudes, Nucl. Phys. B 876 (2013) 215 [arXiv:1304.7918] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.STAG Research Centre and Mathematical SciencesUniversity of SouthamptonSouthamptonU.K.
  2. 2.Institute for Advanced StudySchool of Natural SciencesPrincetonU.S.A.
  3. 3.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany

Personalised recommendations