Advertisement

Holographic collisions in non-conformal theories

  • Maximilian Attems
  • Jorge Casalderrey-Solana
  • David Mateos
  • Daniel Santos-Oliván
  • Carlos F. Sopuerta
  • Miquel Triana
  • Miguel Zilhão
Open Access
Regular Article - Theoretical Physics

Abstract

We numerically simulate gravitational shock wave collisions in a holographic model dual to a non-conformal four-dimensional gauge theory. We find two novel effects associated to the non-zero bulk viscosity of the resulting plasma. First, the hydrodynamization time increases. Second, if the bulk viscosity is large enough then the plasma becomes well described by hydrodynamics before the energy density and the average pressure begin to obey the equilibrium equation of state. We discuss implications for the quark-gluon plasma created in heavy ion collision experiments.

Keywords

Holography and quark-gluon plasmas AdS-CFT Correspondence QuarkGluon Plasma 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  2. [2]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal Coherence in a Holographic Model of Asymmetric Collisions, Phys. Rev. Lett. 112 (2014) 221602 [arXiv:1312.2956] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett. 115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P.M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP 03 (2016) 146 [arXiv:1601.01583] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Buchel, M.P. Heller and R.C. Myers, Equilibration rates in a strongly coupled nonconformal quark-gluon plasma, Phys. Rev. Lett. 114 (2015) 251601 [arXiv:1503.07114] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.A. Janik, G. Plewa, H. Soltanpanahi and M. Spalinski, Linearized nonequilibrium dynamics in nonconformal plasma, Phys. Rev. D 91 (2015) 126013 [arXiv:1503.07149] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Buchel and A. Day, Universal relaxation in quark-gluon plasma at strong coupling, Phys. Rev. D 92 (2015) 026009 [arXiv:1505.05012] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Rougemont, A. Ficnar, S. Finazzo and J. Noronha, Energy loss, equilibration and thermodynamics of a baryon rich strongly coupled quark-gluon plasma, JHEP 04 (2016) 102 [arXiv:1507.06556] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    U. Gürsoy, M. Jarvinen and G. Policastro, Late time behavior of non-conformal plasmas, JHEP 01 (2016) 134 [arXiv:1507.08628] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    U. Gürsoy, A. Jansen, W. Sybesma and S. Vandoren, Holographic Equilibration of Nonrelativistic Plasmas, Phys. Rev. Lett. 117 (2016) 051601 [arXiv:1602.01375] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Attems et al., Thermodynamics, transport and relaxation in non-conformal theories, JHEP 10 (2016) 155 [arXiv:1603.01254] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.A. Janik, J. Jankowski and H. Soltanpanahi, Quasinormal modes and the phase structure of strongly coupled matter, JHEP 06 (2016) 047 [arXiv:1603.05950] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Craps, E.J. Lindgren and A. Taliotis, Holographic thermalization in a top-down confining model, JHEP 12 (2015) 116 [arXiv:1511.00859] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Ali-Akbari, F. Charmchi, H. Ebrahim and L. Shahkarami, Various Time-Scales of Relaxation, Phys. Rev. D 94 (2016) 046008 [arXiv:1602.07903] [INSPIRE].ADSGoogle Scholar
  18. [18]
    U. Gürsoy, A. Jansen and W. van der Schee, New dynamical instability in asymptotically anti-de Sitter spacetime, Phys. Rev. D 94 (2016) 061901 [arXiv:1603.07724] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Buchel, M.P. Heller and J. Noronha, Entropy Production, Hydrodynamics and Resurgence in the Primordial quark-gluon Plasma from Holography, Phys. Rev. D 94 (2016) 106011 [arXiv:1603.05344] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Attems et al., Hydrodynamization and EoSization in non-conformal theories, in preparation.Google Scholar
  21. [21]
    P.M. Chesler and D. Teaney, Dilaton emission and absorption from far-from-equilibrium non-abelian plasma, arXiv:1211.0343 [INSPIRE].
  22. [22]
    P.M. Chesler and D. Teaney, Dynamical Hawking Radiation and Holographic Thermalization, arXiv:1112.6196 [INSPIRE].
  23. [23]
    F. Karsch, D. Kharzeev and K. Tuchin, Universal properties of bulk viscosity near the QCD phase transition, Phys. Lett. B 663 (2008) 217 [arXiv:0711.0914] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Torrieri and I. Mishustin, Instability of Boost-invariant hydrodynamics with a QCD inspired bulk viscosity, Phys. Rev. C 78 (2008) 021901 [arXiv:0805.0442] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Bozek, Flow and interferometry in 3+1 dimensional viscous hydrodynamics, Phys. Rev. C 85 (2012) 034901 [arXiv:1110.6742] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Bozek and I. Wyskiel-Piekarska, Particle spectra in Pb-Pb collisions at \( \sqrt{S_{N\ N}}=2.76 \) TeV, Phys. Rev. C 85 (2012) 064915 [arXiv:1203.6513] [INSPIRE].
  27. [27]
    A. Monnai and T. Hirano, Effects of Bulk Viscosity at Freezeout, Phys. Rev. C 80 (2009) 054906 [arXiv:0903.4436] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G.S. Denicol, T. Kodama and T. Koide, The effect of shear and bulk viscosities on elliptic flow, J. Phys. G 37 (2010) 094040 [arXiv:1002.2394] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Song and U.W. Heinz, Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 024905 [arXiv:0909.1549] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Dusling and T. Schäfer, Bulk viscosity, particle spectra and flow in heavy-ion collisions, Phys. Rev. C 85 (2012) 044909 [arXiv:1109.5181] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Noronha-Hostler, J. Noronha and F. Grassi, Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at energies available at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 90 (2014) 034907 [arXiv:1406.3333] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Ryu et al., Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions, Phys. Rev. Lett. 115 (2015) 132301 [arXiv:1502.01675] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W. Florkowski, R. Ryblewski, N. Su and K. Tywoniuk, Transport coefficients of the Gribov-Zwanziger plasma, Phys. Rev. C 94 (2016) 044904 [arXiv:1509.01242] [INSPIRE].ADSGoogle Scholar
  34. [34]
    ALICE collaboration, Long-range angular correlations on the near and away side in p-Pb collisions at \( \sqrt{s_{N\ N}}=5.02 \) TeV, Phys. Lett. B 719 (2013) 29 [arXiv:1212.2001] [INSPIRE].
  35. [35]
    ATLAS collaboration, Observation of Associated Near-Side and Away-Side Long-Range Correlations in \( \sqrt{s_{N\ N}}=5.02 \) TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110 (2013) 182302 [arXiv:1212.5198] [INSPIRE].
  36. [36]
    PHENIX collaboration, A. Adare et al., Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d+Au Collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. Lett. 111 (2013) 212301 [arXiv:1303.1794] [INSPIRE].
  37. [37]
    CMS collaboration, Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions, Phys. Lett. B 724 (2013) 213 [arXiv:1305.0609] [INSPIRE].
  38. [38]
    PHENIX collaboration, A. Adare et al., Measurements of elliptic and triangular flow in high-multiplicity 3 He+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. Lett. 115 (2015) 142301 [arXiv:1507.06273] [INSPIRE].
  39. [39]
    [39]ATLAS collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in \( \sqrt{s}=13 \) and 2.76TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116(2016) 172301 [arXiv:1509.04776] [INSPIRE].
  40. [40]
    P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies, Phys. Rev. C 85 (2012) 014911 [arXiv:1112.0915] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J.L. Nagle et al., Exploiting Intrinsic Triangular Geometry in Relativistic He3+Au Collisions to Disentangle Medium Properties, Phys. Rev. Lett. 113 (2014) 112301 [arXiv:1312.4565] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Schenke and R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions, Phys. Rev. Lett. 113 (2014) 102301 [arXiv:1405.3605] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Kozlov, M. Luzum, G. Denicol, S. Jeon and C. Gale, Transverse momentum structure of pair correlations as a signature of collective behavior in small collision systems, arXiv:1405.3976 [INSPIRE].
  44. [44]
    P. Romatschke, Light-Heavy Ion Collisions: A window into pre-equilibrium QCD dynamics?, Eur. Phys. J. C 75 (2015) 305 [arXiv:1502.04745] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P. Bozek and W. Broniowski, Hydrodynamic modeling of 3 He-Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Lett. B 747 (2015) 135 [arXiv:1503.00468] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Habich, G.A. Miller, P. Romatschke and W. Xiang, Testing hydrodynamic descriptions of p+p collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 76 (2016) 408 [arXiv:1512.05354] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.D. Orjuela Koop, R. Belmont, P. Yin and J.L. Nagle, Exploring the Beam Energy Dependence of Flow-Like Signatures in Small System d+Au Collisions, Phys. Rev. C 93 (2016) 044910 [arXiv:1512.06949] [INSPIRE].ADSGoogle Scholar
  48. [48]
    K. Dusling, W. Li and B. Schenke, Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions, Int. J. Mod. Phys. E 25 (2016) 1630002 [arXiv:1509.07939] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Maximilian Attems
    • 1
  • Jorge Casalderrey-Solana
    • 1
    • 2
  • David Mateos
    • 1
    • 3
  • Daniel Santos-Oliván
    • 4
  • Carlos F. Sopuerta
    • 4
  • Miquel Triana
    • 1
  • Miguel Zilhão
    • 1
  1. 1.Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC)Universitat de BarcelonaBarcelonaSpain
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUnited Kingdom
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  4. 4.Institut de Ciències de l’Espai (CSIC-IEEC), Campus UABCerdanyola del VallèsSpain

Personalised recommendations