Master symmetry in the AdS 5 × S 5 pure spinor string

  • Osvaldo Chandía
  • William Divine LinchIII
  • Brenno Carlini Vallilo
Open Access
Regular Article - Theoretical Physics

Abstract

We lift the set of classical non-local symmetries recently studied by Klose, Loebbert, and Münkler in the context of 2 cosets to the pure spinor description of the superstring in the AdS 5 × S 5 background.

Keywords

AdS-CFT Correspondence Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for planar N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CF T 4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, Quantum spectral curve at work: from small spin to strong coupling in N = 4 SYM, JHEP 07 (2014) 156 [arXiv:1402.0871] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Alfimov, N. Gromov and V. Kazakov, QCD pomeron from AdS/CFT quantum spectral curve, JHEP 07 (2015) 164 [arXiv:1408.2530] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    C. Marboe and D. Volin, Quantum spectral curve as a tool for a perturbative quantum field theory, Nucl. Phys. B 899 (2015) 810 [arXiv:1411.4758] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    C. Marboe, V. Velizhanin and D. Volin, Six-loop anomalous dimension of twist-two operators in planar N = 4 SYM theory, JHEP 07 (2015) 084 [arXiv:1412.4762] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Quantum spectral curve and the numerical solution of the spectral problem in AdS 5 /CF T 4, JHEP 06 (2016) 036 [arXiv:1504.06640] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Pomeron eigenvalue at three loops in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 115 (2015) 251601 [arXiv:1507.04010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    B.C. Vallilo, Flat currents in the classical AdS 5 × S 5 pure spinor superstring, JHEP 03 (2004) 037 [hep-th/0307018] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Klose, F. Loebbert and H. Munkler, Master symmetry for holographic Wilson loops, Phys. Rev. D 94 (2016) 066006 [arXiv:1606.04104] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].ADSMATHGoogle Scholar
  15. [15]
    N. Berkovits, BRST cohomology and nonlocal conserved charges, JHEP 02 (2005) 060 [hep-th/0409159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    N. Berkovits, Quantum consistency of the superstring in AdS 5 × S 5 background, JHEP 03 (2005) 041 [hep-th/0411170] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Mikhailov and S. Schäfer-Nameki, Algebra of transfer-matrices and Yang-Baxter equations on the string worldsheet in AdS 5 × S 5, Nucl. Phys. B 802 (2008) 1 [arXiv:0712.4278] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    R. Benichou, First-principles derivation of the AdS/CFT Y-systems, JHEP 10 (2011) 112 [arXiv:1108.4927] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    I. Ramirez and B.C. Vallilo, Worldsheet dilatation operator for the AdS superstring, JHEP 05 (2016) 129 [arXiv:1509.00769] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. Aisaka, L.I. Bevilaqua and B.C. Vallilo, On semiclassical analysis of pure spinor superstring in an AdS 5 × S 5 background, JHEP 09 (2012) 068 [arXiv:1206.5134] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Cagnazzo, D. Sorokin, A.A. Tseytlin and L. Wulff, Semiclassical equivalence of Green-Schwarz and pure-spinor/hybrid formulations of superstrings in AdS 5 × S 5 and AdS 2 × S 2 × T 6, J. Phys. A 46 (2013) 065401 [arXiv:1211.1554] [INSPIRE].ADSMATHGoogle Scholar
  22. [22]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    N. Berkovits and O. Chandía, Superstring vertex operators in an AdS 5 × S 5 background, Nucl. Phys. B 596 (2001) 185 [hep-th/0009168] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    B.C. Vallilo, One loop conformal invariance of the superstring in an AdS 5 × S 5 background, JHEP 12 (2002) 042 [hep-th/0210064] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    N. Berkovits and C. Vafa, Towards a worldsheet derivation of the Maldacena conjecture, JHEP 03 (2008) 031 [AIP Conf. Proc. 1031 (2008) 21] [arXiv:0711.1799] [INSPIRE].
  26. [26]
    O.A. Bedoya, L.I. Bevilaqua, A. Mikhailov and V.O. Rivelles, Notes on β-deformations of the pure spinor superstring in AdS 5 × S 5, Nucl. Phys. B 848 (2011) 155 [arXiv:1005.0049] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    O. Chandía, A note on the classical BRST symmetry of the pure spinor string in a curved background, JHEP 07 (2006) 019 [hep-th/0604115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    O. Chandía and B.C. Vallilo, Non-minimal fields of the pure spinor string in general curved backgrounds, JHEP 02 (2015) 092 [arXiv:1412.1030] [INSPIRE].
  29. [29]
    N. Beisert and F. Luecker, Construction of Lax connections by exponentiation, J. Math. Phys. 53 (2012) 122304 [arXiv:1207.3325] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    H. Eichenherr and M. Forger, On the dual symmetry of the nonlinear σ-models, Nucl. Phys. B 155 (1979) 381 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    E. Brézin, C. Itzykson, J. Zinn-Justin and J.B. Zuber, Remarks about the existence of nonlocal charges in two-dimensional models, Phys. Lett. B 82 (1979) 442 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Dolan and A. Roos, Nonlocal currents as Noether currents, Phys. Rev. D 22 (1980) 2018 [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    B.-Y. Hou, M.-L. Ge and Y.-S. Wu, Noether analysis for the hidden symmetry responsible for infinite set of nonlocal currents, Phys. Rev. D 24 (1981) 2238 [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Tonin, On semiclassical equivalence of Green-Schwarz and pure spinor strings in AdS 5 × S 5, J. Phys. A 46 (2013) 245401 [arXiv:1302.2488] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  35. [35]
    D. Müller, H. Münkler, J. Plefka, J. Pollok and K. Zarembo, Yangian symmetry of smooth Wilson loops in N = 4 super Yang-Mills theory, JHEP 11 (2013) 081 [arXiv:1309.1676] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    H. Münkler and J. Pollok, Minimal surfaces of the AdS 5 × S 5 superstring and the symmetries of super Wilson loops at strong coupling, J. Phys. A 48 (2015) 365402 [arXiv:1503.07553] [INSPIRE].MATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Osvaldo Chandía
    • 1
  • William Divine LinchIII
    • 2
  • Brenno Carlini Vallilo
    • 3
  1. 1.Departamento de Ciencias, Facultad de Artes Liberales & Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezPeñalolénChile
  2. 2.George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  3. 3.Departamento de Ciencias FísicasUniversidad Andres BelloSantiagoChile

Personalised recommendations