Advertisement

Duality walls and defects in 5d \( \mathcal{N}=1 \) theories

  • Davide Gaiotto
  • Hee-Cheol KimEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We propose an explicit description of “duality walls” which encode at low energy the global symmetry enhancement expected in the UV completion of certain five-dimensional gauge theories. The proposal is supported by explicit localization computations and implies that the instanton partition function of these theories satisfies novel and unexpected integral equations.

Keywords

Duality in Gauge Field Theories Field Theories in Higher Dimensions Supersymmetric gauge theory Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    D. Gaiotto and S.S. Razamat, \( \mathcal{N}=1 \) theories of class S k, JHEP 07 (2015) 073 [arXiv:1503.05159] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V.P. Spiridonov and S.O. Warnaar, Inversions of integral operators and elliptic beta integrals on root systems, math.CA/0411044.
  11. [11]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP 07 (2015) 167 [arXiv:1505.04743] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    A. Hashimoto, P. Ouyang and M. Yamazaki, Boundaries and defects of \( \mathcal{N}=4 \) SYM with 4 supercharges. Part I: Boundary/junction conditions, JHEP 10 (2014) 107 [arXiv:1404.5527] [INSPIRE].
  15. [15]
    T. Dimofte and D. Gaiotto, An E 7 Surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    S. Terashima, Supersymmetric gauge theories on S 4 × S 1, Phys. Rev. D 89 (2014) 125001 [arXiv:1207.2163] [INSPIRE].ADSGoogle Scholar
  18. [18]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    H. Nakajima, Homology of moduli spaces of instantons on ALE spaces. I, J. Diff. Geom. 40 (1994) 105 [INSPIRE].
  20. [20]
    N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R 4 and (2, 0) superconformal six-dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    L.C. Jeffrey and F.C. Kirwan, Localization for nonabelian group actions, alg-geom/9307001.
  25. [25]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d \( \mathcal{N}=2 \) Gauge Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [Addendum ibid. 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].
  27. [27]
    K. Hori, H. Kim and P. Yi, Witten Index and Wall Crossing, JHEP 01 (2015) 124 [arXiv:1407.2567] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    C. Cordova and S.-H. Shao, An Index Formula for Supersymmetric Quantum Mechanics, arXiv:1406.7853 [INSPIRE].
  29. [29]
    D. Tong and K. Wong, Instantons, Wilson lines and D-branes, Phys. Rev. D 91 (2015) 026007 [arXiv:1410.8523] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Shadchin, Saddle point equations in Seiberg-Witten theory, JHEP 10 (2004) 033 [hep-th/0408066] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP 01 (2013) 022 [arXiv:1207.3577] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions, JHEP 10 (2016) 012 [arXiv:1412.2781] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    M. Bullimore, H.-C. Kim and P. Koroteev, Defects and Quantum Seiberg-Witten Geometry, JHEP 05 (2015) 095 [arXiv:1412.6081] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].
  36. [36]
    Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, Prog. Theor. Exp. Phys. 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].
  37. [37]
    G. Zafrir, Instanton operators and symmetry enhancement in 5d supersymmetric USp, SO and exceptional gauge theories, JHEP 07 (2015) 087 [arXiv:1503.08136] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141 [arXiv:1410.2806] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    S.-S. Kim, M. Taki and F. Yagi, Tao Probing the End of the World, Prog. Theor. Exp. Phys. 2015 (2015) 083B02 [arXiv:1504.03672] [INSPIRE].
  40. [40]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  41. [41]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  42. [42]
    N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  43. [43]
    A. Braverman, M. Finkelberg and H. Nakajima, Instanton moduli spaces and Open image in new window -algebras, arXiv:1406.2381 [INSPIRE].
  44. [44]
    S. Kim, K.-M. Lee and S. Lee, Dyonic Instantons in 5-dim Yang-Mills Chern-Simons Theories, JHEP 08 (2008) 064 [arXiv:0804.1207] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    B. Collie and D. Tong, Instantons, Fermions and Chern-Simons Terms, JHEP 07 (2008) 015 [arXiv:0804.1772] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    O. Aharony, M. Berkooz, S. Kachru and E. Silverstein, Matrix description of (1, 0) theories in six-dimensions, Phys. Lett. B 420 (1998) 55 [hep-th/9709118] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, hep-th/0302191 [INSPIRE].
  49. [49]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations