Heavy Higgs bosons at low tan β: from the LHC to 100 TeV

Abstract

We present strategies to search for heavy neutral Higgs bosons decaying to top quark pairs, as often occurs at low tan β in type II two Higgs doublet models such as the Higgs sector of the MSSM. The resonant production channel is unsatisfactory due to interference with the SM background. We instead propose to utilize same-sign dilepton signatures arising from the production of heavy Higgs bosons in association with one or two top quarks and subsequent decay to a top pair. We find that for heavier neutral Higgs bosons the production in association with one top quark provides greater sensitivity than production in association with two top quarks. We obtain current limits at the LHC using Run I data at 8 TeV and forecast the sensitivity of a dedicated analysis during Run II at 14 TeV. Then we perform a detailed BDT study for the 14 TeV LHC and a future 100 TeV collider.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Search for the neutral Higgs bosons of the minimal supersymmetric Standard Model in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 02 (2013) 095 [arXiv:1211.6956] [INSPIRE].

  2. [2]

    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric Standard Model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].

  3. [3]

    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at\( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].

  4. [4]

    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].

  5. [5]

    ATLAS collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the Hγγ decay channel at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 753 (2016) 69 [arXiv:1508.02507] [INSPIRE].

  6. [6]

    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].

  7. [7]

    CMS collaboration, Searches for heavy Higgs bosons in two-Higgs-doublet models and for tch decay using multilepton and diphoton final states in pp collisions at 8 TeV, Phys. Rev. D 90 (2014) 112013 [arXiv:1410.2751] [INSPIRE].

  8. [8]

    CMS collaboration, Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks, JHEP 11 (2015) 071 [arXiv:1506.08329] [INSPIRE].

  9. [9]

    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to μ + μ in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett. B 752 (2016) 221 [arXiv:1508.01437] [INSPIRE].

  10. [10]

    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν in fully hadronic final states using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].

  11. [11]

    ATLAS collaboration, Search for a charged Higgs boson produced in the vector-boson fusion mode with decay H ±W ± Z using pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, Phys. Rev. Lett. 114 (2015) 231801 [arXiv:1503.04233] [INSPIRE].

  12. [12]

    CMS collaboration, Search for a charged Higgs boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2015) 018 [arXiv:1508.07774] [INSPIRE].

  13. [13]

    P.S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural Standard Model alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].

  14. [14]

    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The hunt for the rest of the Higgs bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    B. Bhattacherjee, A. Chakraborty and A. Choudhury, Status of the MSSM Higgs sector using global analysis and direct search bounds and future prospects at the High Luminosity LHC, Phys. Rev. D 92 (2015) 093007 [arXiv:1504.04308] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the wedge: search strategies for extended Higgs sectors with heavy flavor final states, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    K.J.F. Gaemers and F. Hoogeveen, Higgs production and decay into heavy flavors with the gluon fusion mechanism, Phys. Lett. B 146 (1984) 347 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    S. Jung, J. Song and Y.W. Yoon, Dip or nothingness of a Higgs resonance from the interference with a complex phase, Phys. Rev. D 92 (2015) 055009 [arXiv:1505.00291] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    T. Han, G. Valencia and Y. Wang, Hadron collider signatures for new interactions of top and bottom quarks, Phys. Rev. D 70 (2004) 034002 [hep-ph/0405055] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    B. Lillie, J. Shu and T.M.P. Tait, Top compositeness at the Tevatron and LHC, JHEP 04 (2008) 087 [arXiv:0712.3057] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    B.S. Acharya, P. Grajek, G.L. Kane, E. Kuflik, K. Suruliz and L.-T. Wang, Identifying multi-top events from gluino decay at the LHC, arXiv:0901.3367 [INSPIRE].

  25. [25]

    N. Chen, J. Li and Y. Liu, LHC searches for heavy neutral Higgs bosons with a top jet substructure analysis, Phys. Rev. D 93 (2016) 095013 [arXiv:1509.03848] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].

  29. [29]

    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs boson: alignment without decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    H.E. Haber, The Higgs data and the decoupling limit, in 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), Toyama Japan February 13–16 2013 [arXiv:1401.0152] [INSPIRE].

  31. [31]

    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev. D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2014) 163 [Erratum ibid. 01 (2015) 014] [arXiv:1311.6736] [INSPIRE].

  36. [36]

    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    R. Field, Min-bias and the underlying event at the LHC, Acta Phys. Polon. B 42 (2011) 2631 [arXiv:1110.5530] [INSPIRE].

    Article  Google Scholar 

  39. [39]

    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  40. [40]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  42. [42]

    C. Brust, P. Maksimovic, A. Sady, P. Saraswat, M.T. Walters and Y. Xin, Identifying boosted new physics with non-isolated leptons, JHEP 04 (2015) 079 [arXiv:1410.0362] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].

  44. [44]

    A. Hocker et al., TMVA — toolkit for multivariate data analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].

  45. [45]

    ATLAS collaboration, Search for new physics using events with b-jets and a pair of same charge leptons in 3.2 fb−1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-032, CERN, Geneva Switzerland (2016).

  46. [46]

    R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    BoCA: Boosted Collider Analysis webpage, https://github.com/BoostedColliderAnalysis/BoCA, (2015).

  48. [48]

    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    G. Kasieczka, T. Plehn, T. Schell, T. Strebler and G.P. Salam, Resonance searches with an updated top tagger, JHEP 06 (2015) 203 [arXiv:1503.05921] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Additional information

ArXiv ePrint: 1605.08744

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Craig, N., Hajer, J., Li, YY. et al. Heavy Higgs bosons at low tan β: from the LHC to 100 TeV. J. High Energ. Phys. 2017, 18 (2017). https://doi.org/10.1007/JHEP01(2017)018

Download citation

Keywords

  • Beyond Standard Model
  • Higgs Physics