Advertisement

Topological solitons in the supersymmetric Skyrme model

Open Access
Regular Article - Theoretical Physics

Abstract

A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.

Keywords

Solitons Monopoles and Instantons Sigma Models Supersymmetric Effective Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556.CrossRefMathSciNetGoogle Scholar
  2. [2]
    T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127.ADSCrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    R.A. Battye, N.S. Manton, P.M. Sutcliffe and S.W. Wood, Light nuclei of even mass number in the Skyrme model, Phys. Rev. C 80 (2009) 034323 [arXiv:0905.0099] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P.H.C. Lau and N.S. Manton, States of Carbon-12 in the Skyrme model, Phys. Rev. Lett. 113 (2014) 232503 [arXiv:1408.6680] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C.J. Halcrow and N.S. Manton, A Skyrme model approach to the spin-orbit force, JHEP 01 (2015) 016 [arXiv:1410.0880] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Karliner, C. King and N.S. Manton, Electron scattering intensities and Patterson functions of skyrmions, J. Phys. G 43 (2016) 055104 [arXiv:1510.00280] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Haberichter, P.H.C. Lau and N.S. Manton, Electromagnetic transition strengths for light nuclei in the Skyrme model, Phys. Rev. C 93 (2016) 034304 [arXiv:1510.08811] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Sutcliffe, Skyrmions, instantons and holography, JHEP 08 (2010) 019 [arXiv:1003.0023] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    P. Sutcliffe, Skyrmions in a truncated BPS theory, JHEP 04 (2011) 045 [arXiv:1101.2402] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    L.D. Faddeev, Some comments on the many dimensional solitons, Lett. Math. Phys. 1 (1976) 289 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].
  14. [14]
    N.S. Manton and P.J. Ruback, Skyrmions in flat space and curved space, Phys. Lett. B 181 (1986) 137 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large-N c, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.M. Queiruga, Skyrme-like models and supersymmetry in 3 + 1 dimensions, Phys. Rev. D 92 (2015) 105012 [arXiv:1508.06692] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B 87 (1979) 203 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E.A. Bergshoeff, R.I. Nepomechie and H.J. Schnitzer, Supersymmetric Skyrmions in four-dimensions, Nucl. Phys. B 249 (1985) 93 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    T. Fujimori, M. Nitta and Y. Yamada, Ghostbusters in higher derivative supersymmetric theories: who is afraid of propagating auxiliary fields?, JHEP 09 (2016) 106 [arXiv:1608.01843] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Freyhult, The supersymmetric extension of the Faddeev model, Nucl. Phys. B 681 (2004) 65 [hep-th/0310261] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P (X, ϕ) and the ghost condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, Extended supersymmetry and BPS solutions in baby Skyrme models, JHEP 05 (2013) 108 [arXiv:1304.0774] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    M. Nitta and S. Sasaki, BPS states in supersymmetric chiral models with higher derivative terms, Phys. Rev. D 90 (2014) 105001 [arXiv:1406.7647] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Nitta and S. Sasaki, Classifying BPS states in supersymmetric gauge theories coupled to higher derivative chiral models, Phys. Rev. D 91 (2015) 125025 [arXiv:1504.08123] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    S.B. Gudnason, M. Nitta and S. Sasaki, A supersymmetric Skyrme model, JHEP 02 (2016) 074 [arXiv:1512.07557] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    M. Nitta and S. Sasaki, Higher derivative corrections to manifestly supersymmetric nonlinear realizations, Phys. Rev. D 90 (2014) 105002 [arXiv:1408.4210] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  31. [31]
    J.M. Speight, A pure Skyrme instanton, Phys. Lett. B 659 (2008) 429 [hep-th/0703198] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Structure of nonlinear realization in supersymmetric theories, Phys. Lett. B 138 (1984) 94 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Nonlinear realization in supersymmetric theories, Prog. Theor. Phys. 72 (1984) 313 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Nonlinear realization in supersymmetric theories. 2, Prog. Theor. Phys. 72 (1984) 1207 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    A.C.W. Kotcheff and G.M. Shore, Kähler σ models from supersymmetric gauge theories, Int. J. Mod. Phys. A 4 (1989) 4391 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Nakahara, Toy skyrmions in superfluid He-3 A, Prog. Theor. Phys. 77 (1987) 1011 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.B. Gudnason and M. Nitta, Effective field theories on solitons of generic shapes, Phys. Lett. B 747 (2015) 173 [arXiv:1407.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.B. Gudnason and M. Nitta, Incarnations of Skyrmions, Phys. Rev. D 90 (2014) 085007 [arXiv:1407.7210] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.B. Gudnason and M. Nitta, Skyrmions confined as beads on a vortex ring, Phys. Rev. D 94 (2016) 025008 [arXiv:1606.00336] [INSPIRE].ADSGoogle Scholar
  40. [40]
    E. Babichev, Gauge k-vortices, Phys. Rev. D 77 (2008) 065021 [arXiv:0711.0376] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Adam, P. Klimas, J. Sanchez-Guillen and A. Wereszczynski, Compact gauge K vortices, J. Phys. A 42 (2009) 135401 [arXiv:0811.4503] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  42. [42]
    D. Bazeia, E. da Hora, C. dos Santos and R. Menezes, BPS solutions to a generalized Maxwell-Higgs model, Eur. Phys. J. C 71 (2011) 1833 [arXiv:1201.2974] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Sasaki, M. Yamaguchi and D. Yokoyama, Supersymmetric DBI inflation, Phys. Lett. B 718 (2012) 1 [arXiv:1205.1353] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys. B 533 (1998) 627 [hep-th/9805168] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  46. [46]
    T.C. Kraan and P. van Baal, Monopole constituents inside SU(N) calorons, Phys. Lett. B 435 (1998) 389 [hep-th/9806034] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    D. Harland and R.S. Ward, Chains of Skyrmions, JHEP 12 (2008) 093 [arXiv:0807.3870] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  49. [49]
    M. Nitta, Fractional instantons and bions in the O(N) model with twisted boundary conditions, JHEP 03 (2015) 108 [arXiv:1412.7681] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  50. [50]
    M. Nitta, Fractional instantons and bions in the principal chiral model on \( {\mathrm{\mathbb{R}}}^2\times {S}^1 \) with twisted boundary conditions, JHEP 08 (2015) 063 [arXiv:1503.06336] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  52. [52]
    M. Eto et al., Non-abelian vortices on cylinder: duality between vortices and walls, Phys. Rev. D 73 (2006) 085008 [hep-th/0601181] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Dabrowski and G.V. Dunne, Fractionalized non-self-dual solutions in the CP N − 1 model, Phys. Rev. D 88 (2013) 025020 [arXiv:1306.0921] [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Misumi, M. Nitta and N. Sakai, Non-BPS exact solutions and their relation to bions in \( \mathrm{\mathbb{C}}{P}^{N-1} \) models, JHEP 05 (2016) 057 [arXiv:1604.00839] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    G.V. Dunne and M. Ünsal, Resurgence and trans-series in quantum field theory: the CP N − 1 model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G.V. Dunne and M. Ünsal, Continuity and resurgence: towards a continuum definition of the \( \mathrm{\mathbb{C}}{\mathrm{\mathbb{P}}}^{N-1} \) model, Phys. Rev. D 87 (2013) 025015 [arXiv:1210.3646] [INSPIRE].ADSGoogle Scholar
  57. [57]
    T. Misumi, M. Nitta and N. Sakai, Neutral bions in the \( \mathrm{\mathbb{C}}{P}^{N-1} \) model, JHEP 06 (2014) 164 [arXiv:1404.7225] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, N = 1 supersymmetric extension of the baby Skyrme model, Phys. Rev. D 84 (2011) 025008 [arXiv:1105.1168] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Bolognesi and W. Zakrzewski, Baby Skyrme model, near-BPS approximations and supersymmetric extensions, Phys. Rev. D 91 (2015) 045034 [arXiv:1407.3140] [INSPIRE].ADSGoogle Scholar
  60. [60]
    J.M. Queiruga, Baby Skyrme model and fermionic zero modes, Phys. Rev. D 94 (2016) 065022 [arXiv:1606.02869] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sven Bjarke Gudnason
    • 1
  • Muneto Nitta
    • 2
  • Shin Sasaki
    • 3
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan
  3. 3.Department of PhysicsKitasato UniversitySagamiharaJapan

Personalised recommendations