Advertisement

The last refuge of mixed wino-Higgsino dark matter

  • M. Beneke
  • A. Bharucha
  • A. HryczukEmail author
  • S. Recksiegel
  • P. Ruiz-Femenía
Open Access
Regular Article - Theoretical Physics

Abstract

We delineate the allowed parameter and mass range for a wino-like dark matter particle containing some Higgsino admixture in the MSSM by analysing the constraints from diffuse gamma-rays from the dwarf spheroidal galaxies, galactic cosmic rays, direct detection and cosmic microwave background anisotropies. A complete calculation of the Sommerfeld effect for the mixed-neutralino case is performed. We find that the combination of direct and indirect searches poses significant restrictions on the thermally produced wino-Higgsino dark matter with correct relic density. For μ > 0 nearly the entire parameter space considered is excluded, while for μ < 0 a substantial region is still allowed, provided conservative assumptions on astrophysical uncertainties are adopted.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Beneke et al., Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119 [arXiv:1601.04718] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect Detection Analysis: Wino Dark Matter Case Study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Fan and M. Reece, In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Roszkowski, E.M. Sessolo and A.J. Williams, Prospects for dark matter searches in the pMSSM, JHEP 02 (2015) 014 [arXiv:1411.5214] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    V. Lefranc, E. Moulin, P. Panci, F. Sala and J. Silk, Dark Matter in γ lines: Galactic Center vs dwarf galaxies, JCAP 09 (2016) 043 [arXiv:1608.00786] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos I. General framework and S-wave annihilation, JHEP 03 (2013) 148 [Erratum ibid. 10 (2013) 224] [arXiv:1210.7928] [INSPIRE].
  8. [8]
    C. Hellmann and P. Ruiz-Femenía, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos II. P-wave and next-to-next-to-leading order S-wave coefficients, JHEP 08 (2013) 084 [arXiv:1303.0200] [INSPIRE].
  9. [9]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
  10. [10]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Heavy neutralino relic abundance with Sommerfeld enhancements — a study of pMSSM scenarios, JHEP 03 (2015) 162 [arXiv:1411.6930] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    AMS collaboration, M. Aguilar et al., Antiproton Flux, Antiproton-to-Proton Flux Ratio and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 091103 [INSPIRE].
  12. [12]
    M. Ibe, S. Matsumoto, S. Shirai and T.T. Yanagida, Wino Dark Matter in light of the AMS-02 2015 Data, Phys. Rev. D 91 (2015) 111701 [arXiv:1504.05554] [INSPIRE].ADSGoogle Scholar
  13. [13]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  14. [14]
    D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, arXiv:1608.07648 [INSPIRE].
  15. [15]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  16. [16]
    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak Corrections are Relevant for Dark Matter Indirect Detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V.S. Berezinsky, S.V. Bulanov, V.A. Dogiel and V.S. Ptuskin, Astrophysics of cosmic rays, V.L. Ginzburg ed., North-Holland, Amsterdam (1990).Google Scholar
  18. [18]
    C. Evoli, D. Gaggero, D. Grasso and L. Maccione, Cosmic-Ray Nuclei, Antiprotons and Gamma-rays in the Galaxy: a New Diffusion Model, JCAP 10 (2008) 018 [arXiv:0807.4730] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Tavakoli, Three Dimensional Distribution of Atomic Hydrogen in the Milky Way, arXiv:1207.6150 [INSPIRE].
  20. [20]
    M. Pohl, P. Englmaier and N. Bissantz, 3D Distribution of Molecular Gas in the Barred Milky Way, Astrophys. J. 677 (2008) 283 [arXiv:0712.4264] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L.J. Gleeson and W.I. Axford, Solar Modulation of Galactic Cosmic Rays, Astrophys. J. 154 (1968) 1011 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D 69 (2004) 063501 [astro-ph/0306207] [INSPIRE].
  23. [23]
    A. Oliva, AMS results on light nuclei: Measurement of the cosmic rays boron-to-carbon ration with AMS-02, presentation at AMS Days at CERN — The future of Cosmic Ray Physics and latest results, CERN, Geneva, Switzerland, 15–17 April 2015.Google Scholar
  24. [24]
    S. Haino, Precision measurement of he flux with AMS, presentation at AMS Days at CERN — The future of Cosmic Ray Physics and latest results, CERN, Geneva, Switzerland, 15–17 April 2015.Google Scholar
  25. [25]
    AMS collaboration, M. Aguilar et al., Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 114 (2015) 171103 [INSPIRE].
  26. [26]
    PAMELA collaboration, O. Adriani et al., PAMELA Measurements of Cosmic-ray Proton and Helium Spectra, Science 332 (2011) 69 [arXiv:1103.4055] [INSPIRE].
  27. [27]
    O. Adriani et al., Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment, Astrophys. J. 791 (2014) 93 [arXiv:1407.1657] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    AMS collaboration, L. Accardo et al., High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121101 [INSPIRE].
  29. [29]
    AMS collaboration, M. Aguilar et al., Precision Measurement of the (e + + e ) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 221102 [INSPIRE].
  30. [30]
    J.J. Engelmann, P. Ferrando, A. Soutoul, P. Goret and E. Juliusson, Charge composition and energy spectra of cosmic-ray for elements from Be to NI - Results from HEAO-3-C2, Astron. Astrophys. 233 (1990) 96 [INSPIRE].ADSGoogle Scholar
  31. [31]
    H.S. Ahn et al., Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment, Astropart. Phys. 30 (2008) 133 [arXiv:0808.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.P. Swordy, D. Mueller, P. Meyer, J. L’Heureux and J.M. Grunsfeld, Relative abundances of secondary and primary cosmic rays at high energies, Astrophys. J. 349 (1990) 625.ADSCrossRefGoogle Scholar
  33. [33]
    J.S. George et al., Elemental composition and energy spectra of galactic cosmic rays during solar cycle 23, Astrophys. J. 698 (2009) 1666.ADSCrossRefGoogle Scholar
  34. [34]
    R. Kappl, A. Reinert and M.W. Winkler, AMS-02 Antiprotons Reloaded, JCAP 10 (2015) 034 [arXiv:1506.04145] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Evoli, D. Gaggero and D. Grasso, Secondary antiprotons as a Galactic Dark Matter probe, JCAP 12 (2015) 039 [arXiv:1504.05175] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Giesen et al., AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, JCAP 09 (2015) 023 [arXiv:1504.04276] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Fermi-LAT, MAGIC collaborations, M.L. Ahnen et al., Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  38. [38]
    N. Padmanabhan and D.P. Finkbeiner, Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects, Phys. Rev. D 72 (2005) 023508 [astro-ph/0503486] [INSPIRE].
  39. [39]
    S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on Dark Matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].ADSGoogle Scholar
  40. [40]
    T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].ADSGoogle Scholar
  41. [41]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  42. [42]
    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct Detection of Electroweak-Interacting Dark Matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    PandaX-II collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  45. [45]
    J. Bovy and S. Tremaine, On the local dark matter density, Astrophys. J. 756 (2012) 89 [arXiv:1205.4033] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Dürr et al., Lattice computation of the nucleon scalar quark contents at the physical point, Phys. Rev. Lett. 116 (2016) 172001 [arXiv:1510.08013] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].
  48. [48]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Crivellin, M. Hoferichter, M. Procura and L.C. Tunstall, Light stops, blind spots and isospin violation in the MSSM, JHEP 07 (2015) 129 [arXiv:1503.03478] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Ullio and M. Valli, A critical reassessment of particle Dark Matter limits from dwarf satellites, JCAP 07 (2016) 025 [arXiv:1603.07721] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    A. Kounine, Latest results from the alpha magnetic spectrometer: positron fraction and antiproton/proton ratio, presentation at AMS Days at CERN — The future of Cosmic Ray Physics and latest results, CERN, Geneva, Switzerland, 15–17 April 2015.Google Scholar
  52. [52]
    O. Adriani et al., Measurement of the flux of primary cosmic ray antiprotons with energies of 60-MeV to 350-GeV in the PAMELA experiment, JETP Lett. 96 (2013) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    H.E.S.S. collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
  54. [54]
    H.E.S.S. collaboration, A. Abramowski et al., Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • M. Beneke
    • 1
  • A. Bharucha
    • 2
  • A. Hryczuk
    • 3
    • 4
    Email author
  • S. Recksiegel
    • 1
  • P. Ruiz-Femenía
    • 1
    • 5
  1. 1.Physik Department T31Technische Universität MünchenGarchingGermany
  2. 2.Aix Marseille Univ, Université de Toulon, CNRS, CPTMarseilleFrance
  3. 3.Department of PhysicsUniversity of OsloOsloNorway
  4. 4.National Centre for Nuclear ResearchWarsawPoland
  5. 5.Departamento de Física Teórica and Instituto de Física Teórica UAM-CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations