Advertisement

Journal of High Energy Physics

, 2016:181 | Cite as

Transverse-momentum-dependent quark splitting functions in k T -factorization: real contributions

  • Oleksandr Gituliar
  • Martin Hentschinski
  • Krzysztof Kutak
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate transverse momentum dependent quark splitting kernels P gq and P qq within k T -factorization, completing earlier results which concentrated on gluon splitting functions P gg and P qg . The complete set of splitting kernels is an essential requirement for the formulation of a complete set of evolution equations for transverse momentum dependent parton distribution functions and the development of corresponding parton shower algorithms.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Angeles-Martinez et al., Transverse momentum dependent (TMD) parton distribution functions: status and prospects, arXiv:1507.0526.
  2. [2]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).CrossRefGoogle Scholar
  3. [3]
    I. Balitsky and A. Tarasov, Rapidity evolution of gluon TMD from low to moderate x, JHEP 10 (2015) 017 [arXiv:1505.0215].CrossRefADSGoogle Scholar
  4. [4]
    F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of unintegrated gluon distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].ADSGoogle Scholar
  5. [5]
    P. Kotko et al., Improved TMD factorization for forward dijet production in dilute-dense hadronic collisions, JHEP 09 (2015) 106 [arXiv:1503.0342].CrossRefADSGoogle Scholar
  6. [6]
    Y.V. Kovchegov and M.D. Sievert, Calculating TMDs of an unpolarized target: quasi-classical approximation and quantum evolution, arXiv:1505.0117.
  7. [7]
    S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    M. Deak, F. Hautmann, H. Jung and K. Kutak, Forward jets and energy flow in hadronic collisions, Eur. Phys. J. C 72 (2012) 1982 [arXiv:1112.6354] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    M. Deak, F. Hautmann, H. Jung and K. Kutak, Forward-central jet correlations at the Large Hadron Collider, arXiv:1012.6037 [INSPIRE].
  10. [10]
    G. Chachamis, M. Deak, M. Hentschinski, G. Rodrigo and A. Sabio Vera, Single bottom quark production in k -factorisation, JHEP 09 (2015) 123 [arXiv:1507.0577].CrossRefADSGoogle Scholar
  11. [11]
    S. Dooling, F. Hautmann and H. Jung, Hadroproduction of electroweak gauge boson plus jets and TMD parton density functions, Phys. Lett. B 736 (2014) 293 [arXiv:1406.2994] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    F. Hautmann, M. Hentschinski and H. Jung, Forward Z-boson production and the unintegrated sea quark density, Nucl. Phys. B 865 (2012) 54 [arXiv:1205.1759] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  13. [13]
    A. van Hameren, P. Kotko and K. Kutak, Resummation effects in the forward production of Z 0 + jet at the LHC, Phys. Rev. D 92 (2015) 054007 [arXiv:1505.0276].ADSGoogle Scholar
  14. [14]
    M. Ciafaloni, Coherence effects in initial jets at small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    G. Marchesini, QCD coherence in the structure function and associated distributions at small x, Nucl. Phys. B 445 (1995) 49 [hep-ph/9412327] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    S. Catani, F. Fiorani and G. Marchesini, Small x behavior of initial state radiation in perturbative QCD, Nucl. Phys. B 336 (1990) 18 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    S. Catani, F. Fiorani and G. Marchesini, QCD coherence in initial state radiation, Phys. Lett. B 234 (1990) 339 [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    F. Hautmann and H. Jung, Transverse momentum dependent gluon density from DIS precision data, Nucl. Phys. B 883 (2014) 1 [arXiv:1312.7875] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    K. Kutak and S. Sapeta, Gluon saturation in dijet production in p-Pb collisions at Large Hadron Collider, Phys. Rev. D 86 (2012) 094043 [arXiv:1205.5035] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K. Kutak, Hard scale dependent gluon density, saturation and forward-forward dijet production at the LHC, Phys. Rev. D 91 (2015) 034021 [arXiv:1409.3822] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Kwiecinski, A.D. Martin and A.M. Stasto, A unified BFKL and GLAP description of F2 data, Phys. Rev. D 56 (1997) 3991 [hep-ph/9703445] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. van Hameren, P. Kotko, K. Kutak and S. Sapeta, Small-x dynamics in forward-central dijet decorrelations at the LHC, Phys. Lett. B 737 (2014) 335 [arXiv:1404.6204] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    H. Jung, F. Hautmann and A. Lelek, TMD MC CASCADE, talk given at REF conference (2015).Google Scholar
  25. [25]
    S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order, Nucl. Phys. B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    S. Jadach, A. Kusina, M. Skrzypek and M. Slawinska, Two real parton contributions to non-singlet kernels for exclusive QCD DGLAP evolution, JHEP 08 (2011) 012 [arXiv:1102.5083] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  28. [28]
    S. Jadach, A. Kusina, W. Placzek, M. Skrzypek and M. Slawinska, Inclusion of the QCD next-to-leading order corrections in the quark-gluon Monte Carlo shower, Phys. Rev. D 87 (2013) 034029 [arXiv:1103.5015] [INSPIRE].ADSGoogle Scholar
  29. [29]
    O. Gituliar, Higher-order corrections in QCD evolution equations and tools for their calculation, Ph.D Thesis, INP, Cracow, Poland (2014), arXiv:1403.6897 [INSPIRE].
  30. [30]
    O. Gituliar, S. Jadach, A. Kusina and M. Skrzypek, On regularizing the infrared singularities in QCD NLO splitting functions with the new Principal Value prescription, Phys. Lett. B 732 (2014) 218 [arXiv:1401.5087] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    L.N. Lipatov and M.I. Vyazovsky, Quasimulti-Regge processes with a quark exchange in the t channel, Nucl. Phys. B 597 (2001) 399 [hep-ph/0009340] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    M. Hentschinski and A.S. Vera, NLO jet vertex from Lipatov’s QCD effective action, Phys. Rev. D 85 (2012) 056006 [arXiv:1110.6741] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Hentschinski, Pole prescription of higher order induced vertices in Lipatov’s QCD effective action, Nucl. Phys. B 859 (2012) 129 [arXiv:1112.4509] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  35. [35]
    G. Chachamis, M. Hentschinski, J.D. Madrigal Martinez and A. Sabio Vera, Quark contribution to the gluon Regge trajectory at NLO from the high energy effective action, Nucl. Phys. B 861 (2012) 133 [arXiv:1202.0649] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  36. [36]
    G. Chachamis, M. Hentschinski, J.D. Madrigal Mart´ınez and A.S. Vera, Next-to-leading order corrections to the gluon-induced forward jet vertex from the high energy effective action, Phys. Rev. D 87 (2013) 076009 [arXiv:1212.4992] [INSPIRE].ADSGoogle Scholar
  37. [37]
    G. Chachamis, M. Hentschinski, J.D. Madrigal Martinez and A. Sabio Vera, Gluon Regge trajectory at two loops from Lipatov’s high energy effective action, Nucl. Phys. B 876 (2013) 453 [arXiv:1307.2591] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    M. Hentschinski, J.D. Madrigal Martínez, B. Murdaca and A.S. Vera, The next-to-leading order vertex for a forward jet plus a rapidity gap at high energies, Phys. Lett. B 735 (2014) 168 [arXiv:1404.2937] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  39. [39]
    M. Hentschinski, J.D. Madrigal Martínez, B. Murdaca and A.S. Vera, The quark induced Mueller-Tang jet impact factor at next-to-leading order, Nucl. Phys. B 887 (2014) 309 [arXiv:1406.5625] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    M. Hentschinski, J.D.M. Martínez, B. Murdaca and A.S. Vera, The gluon-induced Mueller-Tang jet impact factor at next-to-leading order, Nucl. Phys. B 889 (2014) 549 [arXiv:1409.6704] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    A.V. Bogdan and V.S. Fadin, A proof of the reggeized form of amplitudes with quark exchanges, Nucl. Phys. B 740 (2006) 36 [hep-ph/0601117] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  42. [42]
    R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Perturbation theory and the parton model in QCD, Nucl. Phys. B 152 (1979) 285 [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    A. van Hameren, K. Kutak and T. Salwa, Scattering amplitudes with off-shell quarks, Phys. Lett. B 727 (2013) 226 [arXiv:1308.2861] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  44. [44]
    M. Ciafaloni and D. Colferai, Dimensional regularisation and factorisation schemes in the BFKL equation at subleading level, JHEP 09 (2005) 069 [hep-ph/0507106] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    J. Collins and T. Rogers, Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel, Phys. Rev. D 91 (2015) 074020 [arXiv:1412.3820] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M.G. Echevarria, A. Idilbi, A. Schäfer and I. Scimemi, Model-independent evolution of Transverse Momentum Dependent Distribution functions (TMDs) at NNLL, Eur. Phys. J. C 73 (2013) 2636 [arXiv:1208.1281] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Oleksandr Gituliar
    • 1
  • Martin Hentschinski
    • 2
    • 3
  • Krzysztof Kutak
    • 1
  1. 1.Instytut Fizyki Jadrowej Polskiej Akademii NaukKrakówPoland
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  3. 3.Instituto de F´ısica y Matemáticas, Universidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations