Journal of High Energy Physics

, 2016:157 | Cite as

Black holes turn white fast, otherwise stay black: no half measures

  • Carlos Barceló
  • Raúl Carballo-RubioEmail author
  • Luis J. Garay
Open Access
Regular Article - Theoretical Physics


Recently, various authors have proposed that the dominant ultraviolet effect in the gravitational collapse of massive stars to black holes is the transition between a black-hole geometry and a white-hole geometry, though their proposals are radically different in terms of their physical interpretation and characteristic time scales [1, 2]. Several decades ago, it was shown by Eardley that white holes are highly unstable to the accretion of small amounts of matter, being rapidly turned into black holes [3]. Studying the crossing of null shells on geometries describing the black-hole to white-hole transition, we obtain the conditions for the instability to develop in terms of the parameters of these geometries. We conclude that transitions with long characteristic time scales are pathologically unstable: occasional perturbations away from the perfect vacuum around these compact objects, even if being imperceptibly small, suffocate the white-hole explosion. On the other hand, geometries with short characteristic time scales are shown to be robust against perturbations, so that the corresponding processes could take place in real astrophysical scenarios. This motivates a conjecture about the transition amplitudes of different decay channels for black holes in a suitable ultraviolet completion of general relativity.


Black Holes Models of Quantum Gravity Spacetime Singularities 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Mutiny at the white-hole district, Int. J. Mod. Phys. D 23 (2014) 1442022 [arXiv:1407.1391] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    H.M. Haggard and C. Rovelli, Quantum-gravity effects outside the horizon spark black to white hole tunneling, Phys. Rev. D 92 (2015) 104020 [arXiv:1407.0989] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D.M. Eardley, Death of white holes in the early universe, Phys. Rev. Lett. 33 (1974) 442 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Where does the physics of extreme gravitational collapse reside?, arXiv:1510.04957 [INSPIRE].
  5. [5]
    P. Hajicek and C. Kiefer, Singularity avoidance by collapsing shells in quantum gravity, Int. J. Mod. Phys. D 10 (2001) 775 [gr-qc/0107102] [INSPIRE].
  6. [6]
    P. Hajicek, Quantum theory of gravitational collapse: lecture notes on quantum conchology, Lect. Notes Phys. 631 (2003) 255, [gr-qc/0204049].
  7. [7]
    M. Ambrus and P. Hajicek, Quantum superposition principle and gravitational collapse: scattering times for spherical shells, Phys. Rev. D 72 (2005) 064025 [gr-qc/0507017] [INSPIRE].
  8. [8]
    M. Ambrus, How long does it take until a quantum system reemerges after a gravitational collapse?, Ph.D. thesis, Bern University, Bern, Switzerland (2004).Google Scholar
  9. [9]
    C. Barcelo, L.J. Garay and G. Jannes, Quantum non-gravity and stellar collapse, Found. Phys. 41 (2011) 1532 [arXiv:1002.4651] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    C. Barcelo, R. Carballo-Rubio, L.J. Garay and G. Jannes, The lifetime problem of evaporating black holes: mutiny or resignation, Class. Quant. Grav. 32 (2015) 035012 [arXiv:1409.1501] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    M. Visser, C. Barcelo, S. Liberati and S. Sonego, Small, dark and heavy: But is it a black hole?, arXiv:0902.0346 [INSPIRE].
  12. [12]
    S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  13. [13]
    C. Barrabès, P.R. Brady and E. Poisson, Death of white holes, Phys. Rev. D 47 (1993) 2383.ADSGoogle Scholar
  14. [14]
    A. Ori and E. Poisson, Death of cosmological white holes, Phys. Rev. D 50 (1994) 6150.ADSGoogle Scholar
  15. [15]
    V.P. Frolov and Í.D. Novikov, Black hole physics: basic concepts and new developments, Fundamental Theories of Physics. Springer (1998).Google Scholar
  16. [16]
    S.K. Blau and A.H. Guth, The stability of the white hole horizon, essay written for the Gravity Research Foundation 1989 Awards for Essays on Gravitation (1989).Google Scholar
  17. [17]
    S.K. Blau, ’t Hooft Dray geometries and the death of white holes, Phys. Rev. D 39 (1989) 2901 [INSPIRE].
  18. [18]
    D. Núñez, H.P. de Oliveira and J. Salim, Dynamics and collision of massive shells in curved backgrounds, Class. Quant. Grav. 10 (1993) 1117 [gr-qc/9302003] [INSPIRE].
  19. [19]
    T. Dray and G. ’t Hooft, The effect of spherical shells of matter on the Schwarzschild black hole, Commun. Math. Phys. 99 (1985) 613 [INSPIRE].
  20. [20]
    I. H. Redmount, Blue-sheet instability of Schwarzschild wormholes, Prog. Theor. Phys. 73 (1985) 1401.CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    Ya. B. Zeldovich, I.D. Novikov and A.A. Starobinsky, Quantum effects in white holes, Zh. Eksp. Teor. Fiz. 66 (1974) 1897 [INSPIRE].
  22. [22]
    C. Barrabes, W. Israel and E. Poisson, Collision of light-like shells and mass inflation in rotating black holes, Class. Quant. Grav. 7 (1990) L273.CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    A. Ori, Inner structure of a charged black hole: an exact mass-inflation solution, Phys. Rev. Lett. 67 (1991) 789 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    A.J.S. Hamilton and P.P. Avelino, The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes, Phys. Rept. 495 (2010) 1 [arXiv:0811.1926] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    E.G. Brown, R.B. Mann and L. Modesto, Mass inflation in the loop black hole, Phys. Rev. D 84 (2011) 104041 [arXiv:1104.3126] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Marolf and A. Ori, Outgoing gravitational shock-wave at the inner horizon: the late-time limit of black hole interiors, Phys. Rev. D 86 (2012) 124026 [arXiv:1109.5139] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Hartle and T. Hertog, Quantum transitions between classical histories, Phys. Rev. D 92 (2015) 063509 [arXiv:1502.06770] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  30. [30]
    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    C. Rovelli and F. Vidotto, Planck stars, Int. J. Mod. Phys. D 23 (2014) 1442026 [arXiv:1401.6562] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    A. Barrau, C. Rovelli and F. Vidotto, Fast radio bursts and white hole signals, Phys. Rev. D 90 (2014) 127503 [arXiv:1409.4031] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Barrau, B. Bolliet, F. Vidotto and C. Weimer, Phenomenology of bouncing black holes in quantum gravity: a closer look, arXiv:1507.05424 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Carlos Barceló
    • 1
  • Raúl Carballo-Rubio
    • 1
    • 2
    Email author
  • Luis J. Garay
    • 3
    • 4
  1. 1.Instituto de Astrofísica de Andalucía (IAA-CSIC)GranadaSpain
  2. 2.Departamento de Geometría y Topología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Física Teórica IIUniversidad Complutense de MadridMadridSpain
  4. 4.Instituto de Estructura de la Materia (IEM-CSIC)MadridSpain

Personalised recommendations