Advertisement

Journal of High Energy Physics

, 2016:152 | Cite as

Holomorphic Yukawa couplings in heterotic string theory

  • Stefan Blesneag
  • Evgeny I. Buchbinder
  • Philip Candelas
  • Andre Lukas
Open Access
Regular Article - Theoretical Physics

Abstract

We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these techniques relate to algebraic methods for computing holomorphic Yukawa couplings. We apply our methods to various examples and evaluate the holomorphic Yukawa couplings explicitly as functions of the complex structure moduli. It is shown that the rank of the Yukawa matrix can decrease at specific loci in complex structure moduli space. In particular, we compute the up Yukawa coupling and the singlet-Higgs-lepton trilinear coupling in the heterotic standard model described in ref. [32].

Keywords

Superstrings and Heterotic Strings Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    A. Strominger and E. Witten, New manifolds for superstring compactification, Commun. Math. Phys. 101 (1985) 341 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless spectra of three generation U(N) heterotic string vacua, JHEP 05 (2007) 041 [hep-th/0612039] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, Fortsch. Phys. 58 (2010) 467 [arXiv:0910.5464] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM spectrum from (0, 2)-deformations of the heterotic standard embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle standard models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A comprehensive scan for heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    A. Strominger, Yukawa couplings in superstring compactification, Phys. Rev. Lett. 55 (1985) 2547 [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    P. Candelas, Yukawa couplings between (2, 1) forms, Nucl. Phys. B 298 (1988) 458 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 1. Compactification and discrete symmetries, Nucl. Phys. B 278 (1986) 667 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 2. Symmetry breaking and the low-energy theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, 273 Yukawa couplings for a three generation superstring model, Phys. Lett. B 192 (1987) 111 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    V. Braun, Y.-H. He and B.A. Ovrut, Yukawa couplings in heterotic standard models, JHEP 04 (2006) 019 [hep-th/0601204] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    V. Bouchard, M. Cvetič and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 [hep-th/0602096] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa couplings in heterotic compactification, Commun. Math. Phys. 297 (2010) 95 [arXiv:0904.2186] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    L.B. Anderson, J. Gray and B. Ovrut, Yukawa textures from heterotic stability walls, JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    P. Green and T. Hubsch, Calabi-Yau manifolds as complete intersections in products of complex projective spaces, Commun. Math. Phys. 109 (1987) 99 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    T. Hubsch, Calabi-Yau manifolds: a bestiary for physicists, World Scientific, Singapore (1992) [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    E.I. Buchbinder, A. Constantin and A. Lukas, The moduli space of heterotic line bundle models: a case study for the tetra-quadric, JHEP 03 (2014) 025 [arXiv:1311.1941] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    E.I. Buchbinder, A. Constantin and A. Lukas, A heterotic standard model with B-L symmetry and a stable proton, JHEP 06 (2014) 100 [arXiv:1404.2767] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    E.I. Buchbinder, A. Constantin and A. Lukas, Non-generic couplings in supersymmetric standard models, Phys. Lett. B 748 (2015) 251 [arXiv:1409.2412] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    E.I. Buchbinder, A. Constantin and A. Lukas, Heterotic QCD axion, Phys. Rev. D 91 (2015) 046010 [arXiv:1412.8696] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Huybrechts, Complex geometry: an introduction, Springer, Berlin Germany (2004).Google Scholar
  36. [36]
    M.B. Green, J.H. Schwarz and E. Witten, Supersting theory. Vol. 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1987).Google Scholar
  37. [37]
    P. Candelas, Lectures on complex manifolds, published in Proceedings, Superstrings 87, Trieste Italy (1987), pg. 1 [INSPIRE].
  38. [38]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Interscience, New York U.S.A. (1978).zbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Stefan Blesneag
    • 1
  • Evgeny I. Buchbinder
    • 2
  • Philip Candelas
    • 3
  • Andre Lukas
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsOxford UniversityOxfordU.K.
  2. 2.The University of Western AustraliaCrawleyAustralia
  3. 3.Mathematical InstituteUniversity of OxfordOxfordU.K.

Personalised recommendations