Advertisement

Journal of High Energy Physics

, 2016:150 | Cite as

Homogeneous M2 duals

  • José Figueroa-O’Farrill
  • Mara Ungureanu
Open Access
Regular Article - Theoretical Physics
  • 68 Downloads

Abstract

Motivated by the search for new gravity duals to M2 branes with N > 4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra \( \mathfrak{o}\mathfrak{s}\mathfrak{p} \)(N |4) for N > 4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra \( \mathfrak{so} \)(n) ⊕ \( \mathfrak{so} \)(3, 2) for n = 5, 6, 7. We find that there are no new backgrounds with n = 6, 7 but we do find a number of new (to us) backgrounds with n = 5. All backgrounds are metrically products of the form AdS4 × P 7, with P riemannian and homogeneous under the action of SO(5), or S 4 × Q 7 with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N = 2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

Keywords

Gauge-gravity correspondence Differential and Algebraic Geometry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    M.J. Duff and K.S. Stelle, Multimembrane solutions of D = 11 supergravity, Phys. Lett. B 253 (1991) 113 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    G.W. Gibbons and P.K. Townsend, Vacuum interpolation in supergravity via super p-branes, Phys. Rev. Lett. 71 (1993) 3754 [hep-th/9307049] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].MathSciNetGoogle Scholar
  7. [7]
    D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1., Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  8. [8]
    P. de Medeiros, J. Figueroa-O’Farrill, S. Gadhia and E. Mendez-Escobar, Half-BPS quotients in M-theory: ADE with a twist, JHEP 10 (2009) 038 [arXiv:0909.0163] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    P. de Medeiros and J. Figueroa-O’Farrill, Half-BPS M2-brane orbifolds, Adv. Theor. Math. Phys. 16 (2012) 1349 [arXiv:1007.4761] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    J. Figueroa-O’Farrill and N. Hustler, The homogeneity theorem for supergravity backgrounds, JHEP 10 (2012) 014 [arXiv:1208.0553] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    N. Kowalsky, Noncompact simple automorphism groups of Lorentz manifolds and other geometric manifolds, Ann. Math. 144 (1996) 611.CrossRefMathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Deffaf, K. Melnick and A. Zeghib, Actions of noncompact semisimple groups on Lorentz manifolds, Geom. Funct. Anal. 18 (2008) 463.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [13]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57 (2007) 1279.CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    B. Komrakov Jr., Four dimensional pseudo-riemannian homogeneous spaces. Classification of real pairs, International Sophus Lie Centre preprint, Moscow Russia (1995).Google Scholar
  16. [16]
    J. Patera, R.T. Sharp, P. Winternitz and H. Zassenhaus, Continuous subgroups of the fundamental groups of physics. 3. The de Sitter groups, J. Math. Phys. 18 (1977) 2259 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    D.V. Alekseevsky, Homogeneous Lorentzian manifolds of a semisimple group, J. Geom. Phys. 62 (2012) 631 [arXiv:1101.3093].CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    J.M. Figueroa-O’Farrill, P. Meessen and S. Philip, Homogeneity and plane-wave limits, JHEP 05 (2005) 050 [hep-th/0504069] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    A.L. Besse, Einstein Manifolds, Springer-Verlag, New York U.S.A. (1987).CrossRefzbMATHGoogle Scholar
  21. [21]
    C. Chevalley and S. Eilenberg, Cohomology Theory of Lie Groups and Lie Algebras, Trans. Am. Math. Soc. 63 (1948) 85 [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  22. [22]
    E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. École Norm. Sup. (3) 6 (1889) 9.Google Scholar
  23. [23]
    J.M. Figueroa-O’Farrill and G. Papadopoulos, Maximally supersymmetric solutions of ten-dimensional and eleven-dimensional supergravities, JHEP 03 (2003) 048 [hep-th/0211089] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    J. Figueroa-O’Farrill, Lie groups acting transitively (and isometrically) on anti de Sitter spaces, MathOverflow, http://mathoverflow.net/questions/78272 (2011).
  25. [25]
    F. Englert, Spontaneous compactification of eleven-dimensional supergravity, Phys. Lett. B 119 (1982) 339 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    C.N. Pope and N.P. Warner, An SU(4) invariant compactification of d = 11 supergravity on a stretched seven sphere, Phys. Lett. B 150 (1985) 352 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    C.N. Pope and N.P. Warner, Two new classes of compactifications of d = 11 supergravity, Class. Quant. Grav. 2 (1985) L1 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    L. Castellani, L.J. Romans and N.P. Warner, A classification of compactifying solutions for d=11 supergravity, Nucl. Phys. B 241(1984) 429 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    B. Biran, F. Englert, B. de Wit and H. Nicolai, Gauged N = 8 supergravity and its breaking from spontaneous compactification, Phys. Lett. B 124 (1983) 45 [Erratum ibid. B 128 (1983) 461] [INSPIRE].
  30. [30]
    M.A. Awada, M.J. Duff and C.N. Pope, N = 8 Supergravity Breaks Down to N = 1, Phys. Rev. Lett. 50 (1983) 294 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    F. Englert, M. Rooman and P. Spindel, Supersymmetry breaking by torsion and the Ricci flat squashed seven spheres, Phys. Lett. B 127 (1983) 47 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Spontaneous supersymmetry breaking by the squashed seven sphere, Phys. Rev. Lett. 50 (1983) 2043 [Erratum ibid. 51 (1983) 846] [INSPIRE].
  33. [33]
    F.A. Bais, H. Nicolai and P. van Nieuwenhuizen, Geometry of coset spaces and massless modes of the squashed seven sphere in supergravity, Nucl. Phys. B 228 (1983) 333 [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    J.M. Figueroa-O’Farrill, F. Leitner and J. Simón, Supersymmetric Freund-Rubin backgrounds, Unfinished draft (2003).Google Scholar
  35. [35]
    A. Lischewski, Computation of generalized Killing spinors on reductive homogeneous spaces, arXiv:1409.2664 [INSPIRE].
  36. [36]
    D.P. Sorokin, V. Tkach and D. Volkov, Kaluza-Klein theories and spontaneous compactification mechanisms of extra space dimensions, in Proceedings of the third seminar on quantum gravity, Moscow Russia (1985), M.A. Markov, V.A. Berezin and V.P. Frolov eds., World Scientific, Singapore (1985).Google Scholar
  37. [37]
    B. Kostant, Holonomy and the Lie algebra of infinitesimal motions of a riemannian manifold, Trans. Am. Math. Soc. 80 (1955) 528.CrossRefMathSciNetzbMATHGoogle Scholar
  38. [38]
    R.P. Geroch, Limits of spacetimes, Commun. Math. Phys. 13 (1969) 180 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    J.M. Figueroa-O’Farrill, P. Meessen and S. Philip, Supersymmetry and homogeneity of M-theory backgrounds, Class. Quant. Grav. 22 (2005) 207 [hep-th/0409170] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    R. Bryant, Isometry group of a homogeneous space, MathOverflow, http://mathoverflow.net/questions/75887 (2011).

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Mathematics and Maxwell Institute for Mathematical SciencesThe University of EdinburghScotlandU.K.
  2. 2.Humboldt-Universität zu Berlin, Institut für MathematikBerlinGermany

Personalised recommendations