Advertisement

Journal of High Energy Physics

, 2016:131 | Cite as

Power-law and intermediate inflationary models in f(T)-gravity

  • K. Rezazadeh
  • A. Abdolmaleki
  • K. Karami
Open Access
Regular Article - Theoretical Physics

Abstract

We study inflation in the framework of f(T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f(T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f(T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f(T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f(T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V(ϕ) ∝ ϕ m but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f(T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V(ϕ) ∝ ϕ 4 which has special reheating properties, can be consistent with the Planck 2015 data in our f(T) scenario while it is ruled out in the standard inflationary scenario.

Keywords

Cosmology of Theories beyond the SM Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    A.D. Linde, Eternally Existing Selfreproducing Chaotic Inflationary Universe, Phys. Lett. B 175 (1986) 395 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    A.D. Linde, Eternal chaotic inflation, Mod. Phys. Lett. A 1 (1986) 81 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuation and Nonsingular Universe. (In Russian), JETP Lett. 33 (1981) 532 [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
  13. [13]
    J. Martin, C. Ringeval and V. Vennin, Encyclopaedia Inflationaris, Phys. Dark Univ. 5 (2014) 75.CrossRefGoogle Scholar
  14. [14]
    K. Rezazadeh, K. Karami, S. Hashemi and P. Karimi, Cold and warm quintessential/tachyonic inflationary models in light of the Planck 2015 results, arXiv:1508.04760 [INSPIRE].
  15. [15]
    N. Okada, V.N. ¸enoğuz and Q. Shafi, The Observational Status of Simple Inflationary Models: an Update, arXiv:1403.6403 [INSPIRE].
  16. [16]
    M.W. Hossain, R. Myrzakulov, M. Sami and E.N. Saridakis, Variable gravity: A suitable framework for quintessential inflation, Phys. Rev. D 90 (2014) 023512 [arXiv:1402.6661] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M.W. Hossain, R. Myrzakulov, M. Sami and E.N. Saridakis, Class of quintessential inflation models with parameter space consistent with BICEP2, Phys. Rev. D 89 (2014) 123513 [arXiv:1404.1445] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M.W. Hossain, R. Myrzakulov, M. Sami and E.N. Saridakis, Evading Lyth bound in models of quintessential inflation, Phys. Lett. B 737 (2014) 191 [arXiv:1405.7491] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    C.-Q. Geng, M.W. Hossain, R. Myrzakulov, M. Sami and E.N. Saridakis, Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results, Phys. Rev. D 92 (2015) 023522 [arXiv:1502.03597] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H.A. Buchdahl, Non-linear Lagrangians and cosmological theory, Mon. Not. Roy. Astron. Soc. 150 (1970) 1 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    S. Pi and T. Wang, 1/R Correction to Gravity in the Early Universe, Phys. Rev. D 80 (2009) 043503 [arXiv:0905.3470] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Q.-G. Huang, A polynomial f(R) inflation model, JCAP 02 (2014) 035 [arXiv:1309.3514] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    M. Rinaldi, G. Cognola, L. Vanzo and S. Zerbini, Inflation in scale-invariant theories of gravity, Phys. Rev. D 91 (2015) 123527 [arXiv:1410.0631] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Artymowski, Z. Lalak and M. Lewicki, Inflationary scenarios in Starobinsky model with higher order corrections, JCAP 06 (2015) 032 [arXiv:1502.01371] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    L. Sebastiani and R. Myrzakulov, F(R) gravity and inflation, Int. J. Geom. Meth. Mod. Phys. 12 (2015) 1530003.CrossRefMathSciNetGoogle Scholar
  26. [26]
    A. Unzicker and T. Case, Translation of Einstein’s attempt of a unified field theory with teleparallelism, physics/0503046 [INSPIRE].
  27. [27]
    K. Hayashi and T. Shirafuji, New General Relativity, Phys. Rev. D 19 (1979) 3524 [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    R. Ferraro and F. Fiorini, Modified teleparallel gravity: Inflation without inflaton, Phys. Rev. D 75 (2007) 084031 [gr-qc/0610067] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    R. Ferraro and F. Fiorini, On Born-Infeld Gravity in Weitzenbock spacetime, Phys. Rev. D 78 (2008) 124019 [arXiv:0812.1981] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    P. Wu and H.W. Yu, The dynamical behavior of f(T) theory, Phys. Lett. B 692 (2010) 176 [arXiv:1007.2348] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    P. Wu and H.W. Yu, f(T) models with phantom divide line crossing, Eur. Phys. J. C 71 (2011) 1552 [arXiv:1008.3669] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H. Wei, X.-P. Ma and H.-Y. Qi, f(T) Theories and Varying Fine Structure Constant, Phys. Lett. B 703 (2011) 74 [arXiv:1106.0102] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    K. Karami and A. Abdolmaleki, f(T) modified teleparallel gravity models as an alternative for holographic and new agegraphic dark energy models, Res. Astron. Astrophys. 13 (2013) 757.CrossRefADSGoogle Scholar
  34. [34]
    K. Karami, A. Abdolmaleki, S. Asadzadeh and Z. Safari, QCD ghost f(T)-gravity model, Eur. Phys. J. C 73 (2013) 2565 [arXiv:1202.2278] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    G.R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys. Rev. D 79 (2009) 124019 [arXiv:0812.1205] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R.-J. Yang, Conformal transformation in f(T) theories, Europhys. Lett. 93 (2011) 60001 [arXiv:1010.1376] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    R.-J. Yang, New types of f(T) gravity, Eur. Phys. J. C 71 (2011) 1797 [arXiv:1007.3571] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    P. Wu and H.W. Yu, Observational constraints on f(T) theory, Phys. Lett. B 693 (2010) 415 [arXiv:1006.0674] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    E.V. Linder, Einstein’s Other Gravity and the Acceleration of the Universe, Phys. Rev. D 81 (2010) 127301 [arXiv:1005.3039] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G.R. Bengochea, Observational information for f(T) theories and Dark Torsion, Phys. Lett. B 695 (2011) 405 [arXiv:1008.3188] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    K. Bamba, C.-Q. Geng, C.-C. Lee and L.-W. Luo, Equation of state for dark energy in f(T) gravity, JCAP 01 (2011) 021 [arXiv:1011.0508] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    R. Myrzakulov, Accelerating universe from F(T) gravity, Eur. Phys. J. C 71 (2011) 1752 [arXiv:1006.1120] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    Y. Zhang, H. Li, Y. Gong and Z.-H. Zhu, Notes on f(T) Theories, JCAP 07 (2011) 015 [arXiv:1103.0719] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    K. Bamba and C.-Q. Geng, Thermodynamics of cosmological horizons in f(T) gravity, JCAP 11 (2011) 008 [arXiv:1109.1694] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    R.-X. Miao, M. Li and Y.-G. Miao, Violation of the first law of black hole thermodynamics in f(T) gravity, JCAP 11 (2011) 033 [arXiv:1107.0515] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    K. Karami and A. Abdolmaleki, Generalized second law of thermodynamics in f(T)-gravity, JCAP 04 (2012) 007 [arXiv:1201.2511] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    M. Hamani Daouda, M.E. Rodrigues and M.J.S. Houndjo, Reconstruction of f(T) gravity according to holographic dark energy, Eur. Phys. J. C 72 (2012) 1893 [arXiv:1111.6575] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    B. Li, T.P. Sotiriou and J.D. Barrow, Large-scale Structure in f(T) Gravity, Phys. Rev. D 83 (2011) 104017 [arXiv:1103.2786] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Nesseris, S. Basilakos, E.N. Saridakis and L. Perivolaropoulos, Viable f(T) models are practically indistinguishable from ΛCDM, Phys. Rev. D 88 (2013) 103010 [arXiv:1308.6142] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J.B. Dent, S. Dutta and E.N. Saridakis, f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis, JCAP 01 (2011) 009 [arXiv:1010.2215] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    S.-H. Chen, J.B. Dent, S. Dutta and E.N. Saridakis, Cosmological perturbations in f(T) gravity, Phys. Rev. D 83 (2011) 023508 [arXiv:1008.1250] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R. Zheng and Q.-G. Huang, Growth factor in f(T) gravity, JCAP 03 (2011) 002 [arXiv:1010.3512] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    Y.-F. Cai, S.-H. Chen, J.B. Dent, S. Dutta and E.N. Saridakis, Matter Bounce Cosmology with the f(T) Gravity, Class. Quant. Grav. 28 (2011) 215011 [arXiv:1104.4349] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    K. Izumi and Y.C. Ong, Cosmological Perturbation in f(T) Gravity Revisited, JCAP 06 (2013) 029 [arXiv:1212.5774] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    A. Behboodi and K. Nozari, Braneworld Cosmological Perturbations in Teleparallel Gravity, Phys. Lett. B 750 (2015) 601 [arXiv:1505.06572] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    A. Behboodi, S. Akhshabi and K. Nozari, Scalar perturbation potentials in a homogeneous and isotropic Weitzenböck geometry, arXiv:1507.08419 [INSPIRE].
  57. [57]
    G.G.L. Nashed and W. El Hanafy, A Built-in Inflation in the f(T)-Cosmology, Eur. Phys. J. C 74 (2014) 3099 [arXiv:1403.0913] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    G.G.L. Nashed, W.E. Hanafy and S.K. Ibrahim, Graceful Exit Inflation in f(T) Gravity, arXiv:1411.3293 [INSPIRE].
  59. [59]
    W. El Hanafy and G.G.L. Nashed, The hidden flat like universe, Eur. Phys. J. C 75 (2015) 279 [arXiv:1409.7199] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    M. Jamil, D. Momeni and R. Myrzakulov, Warm Intermediate Inflation in F(T) Gravity, Int. J. Theor. Phys. 54 (2015) 1098 [arXiv:1309.3269] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  61. [61]
    S. Unnikrishnan and V. Sahni, Resurrecting power law inflation in the light of Planck results, JCAP 10 (2013) 063 [arXiv:1305.5260] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    J.D. Barrow, A.R. Liddle and C. Pahud, Intermediate inflation in light of the three-year WMAP observations, Phys. Rev. D 74 (2006) 127305 [astro-ph/0610807] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.D. Barrow and N.J. Nunes, Dynamics of Logamediate Inflation, Phys. Rev. D 76 (2007) 043501 [arXiv:0705.4426] [INSPIRE].ADSGoogle Scholar
  64. [64]
    K. Rezazadeh, K. Karami and P. Karimi, Intermediate inflation from a non-canonical scalar field, JCAP 09 (2015) 053 [arXiv:1411.7302] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    X.-M. Zhang and J.-Y. Zhu, Consistency of the tachyon warm inflationary universe models, JCAP 02 (2014) 005 [arXiv:1311.5327] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  67. [67]
    C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  68. [68]
    J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  69. [69]
    T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    P. Franche, R. Gwyn, B. Underwood and A. Wissanji, Attractive Lagrangians for Non-Canonical Inflation, Phys. Rev. D 81 (2010) 123526 [arXiv:0912.1857] [INSPIRE].ADSGoogle Scholar
  71. [71]
    L.H. Ford, Gravitational Particle Creation and Inflation, Phys. Rev. D 35 (1987) 2955 [INSPIRE].ADSGoogle Scholar
  72. [72]
    A.R. Liddle and S.M. Leach, How long before the end of inflation were observable perturbations produced?, Phys. Rev. D 68 (2003) 103503 [astro-ph/0305263] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Unnikrishnan, V. Sahni and A. Toporensky, Refining inflation using non-canonical scalars, JCAP 08 (2012) 018 [arXiv:1205.0786] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R.O. Ramos and J.G. Rosa, The importance of being warm (during inflation), Phys. Lett. B 732 (2014) 116 [arXiv:1307.5868] [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    S. Dodelson and L. Hui, A Horizon ratio bound for inflationary fluctuations, Phys. Rev. Lett. 91 (2003) 131301 [astro-ph/0305113] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    R.M. Corless, G.H. Gonnet, D.E.G. Hare and D.J. Jeffrey, On the LambertW function, Adv. Comp. Math. 5 (1996) 329.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KurdistanSanandajIran
  2. 2.Research Institute for Astronomy & Astrophysics of Maragha (RIAAM)MaraghaIran

Personalised recommendations