Journal of High Energy Physics

, 2016:122 | Cite as

Wormholes, emergent gauge fields, and the weak gravity conjecture

  • Daniel HarlowEmail author
Open Access
Regular Article - Theoretical Physics


This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the “principle of completeness”, which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the “weak gravity conjecture”, which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of “effective conformal field theory”, but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.


AdS-CFT Correspondence Gauge Symmetry Black Holes Global Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  2. [2]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  4. [4]
    I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and Transhorizon Measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    I.A. Morrison, Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, JHEP 05 (2014) 053 [arXiv:1403.3426] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    D. Kabat, G. Lifschytz, S. Roy and D. Sarkar, Holographic representation of bulk fields with spin in AdS/CFT, Phys. Rev. D 86 (2012) 026004 [arXiv:1204.0126] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Kabat and G. Lifschytz, CFT representation of interacting bulk gauge fields in AdS, Phys. Rev. D 87 (2013) 086004 [arXiv:1212.3788] [INSPIRE].ADSGoogle Scholar
  8. [8]
    I. Heemskerk, Construction of Bulk Fields with Gauge Redundancy, JHEP 09 (2012) 106 [arXiv:1201.3666] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Harlow, Aspects of the Papadodimas-Raju Proposal for the Black Hole Interior, JHEP 11 (2014) 055 [arXiv:1405.1995] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    D. Kabat and G. Lifschytz, Decoding the hologram: Scalar fields interacting with gravity, Phys. Rev. D 89 (2014) 066010 [arXiv:1311.3020] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    S.B. Giddings, Hilbert space structure in quantum gravity: an algebraic perspective, JHEP 12 (2015) 099 [arXiv:1503.08207] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    W. Donnelly and S.B. Giddings, Diffeomorphism-invariant observables and their nonlocal algebra, arXiv:1507.07921 [INSPIRE].
  15. [15]
    W. Donnelly, D. Marolf and E. Mintun, Combing gravitational hair in 2 + 1 dimensions, Class. Quant. Grav. 33 (2016) 025010 [arXiv:1510.00672] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    D. Engelhardt, B. Freivogel and N. Iqbal, Electric fields and quantum wormholes, Phys. Rev. D 92 (2015) 064050 [arXiv:1504.06336] [INSPIRE].ADSGoogle Scholar
  17. [17]
    D. Marolf and S.F. Ross, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].
  22. [22]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].ADSGoogle Scholar
  24. [24]
    W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D 85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D. Radicevic, Notes on Entanglement in Abelian Gauge Theories, arXiv:1404.1391 [INSPIRE].
  27. [27]
    K.-W. Huang, Central Charge and Entangled Gauge Fields, Phys. Rev. D 92 (2015) 025010 [arXiv:1412.2730] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D. Radicevic, Entanglement in Weakly Coupled Lattice Gauge Theories, arXiv:1509.08478 [INSPIRE].
  29. [29]
    S.-S. Lee, TASI Lectures on Emergence of Supersymmetry, Gauge Theory and String in Condensed Matter Systems, arXiv:1009.5127 [INSPIRE].
  30. [30]
    A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n Expandable Series of Nonlinear σ-models with Instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    E. Witten, Instantons, the Quark Model and the 1/n Expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    A.M. Polyakov, Gauge Fields and Strings, Contemp. Concepts Phys. 3 (1987) 1.ADSMathSciNetGoogle Scholar
  33. [33]
    W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, arXiv:1506.05792 [INSPIRE].
  34. [34]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the Weak Gravity Conjecture with Dimensional Reduction, arXiv:1509.06374 [INSPIRE].
  36. [36]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    A.L. Fitzpatrick, J. Kaplan, E. Katz and L. Randall, Decoupling of High Dimension Operators from the Low Energy Sector in Holographic Models, arXiv:1304.3458 [INSPIRE].
  39. [39]
    M. Dodelson and E. Silverstein, String-theoretic breakdown of effective field theory near black hole horizons, arXiv:1504.05536 [INSPIRE].
  40. [40]
    D. Marolf and A.C. Wall, Eternal Black Holes and Superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP 10 (2011) 059 [arXiv:1104.5077] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, (2013) [INSPIRE].
  43. [43]
    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    T. Senthil, Deconfined Quantum Critical Points, Science 303 (2004) 1490 [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    T. Senthil, L. Balents, S. Sachdev, A. Vishwanath and M.P. Fisher, Quantum criticality beyond the landau-ginzburg-wilson paradigm, Phys. Rev. B 70 (2004) 144407 [cond-mat/0312617].
  47. [47]
    M.A. Metlitski, M. Hermele, T. Senthil and M.P.A. Fisher, Monopoles in CP**(N-1) model via the state-operator correspondence, Phys. Rev. B 78 (2008) 214418 [arXiv:0809.2816] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    E. Dyer, M. Mezei, S.S. Pufu and S. Sachdev, Scaling dimensions of monopole operators in the \( \mathbb{C}{\mathrm{\mathbb{P}}}^N{{}^{{}_b}}^{-1} \) theory in 2 + 1 dimensions, JHEP 06 (2015) 037 [arXiv:1504.00368] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    M. Stone, Lattice Formulation of the \( \mathbb{C}{{\mathrm{\mathbb{P}}}^N}^{-1} \) Nonlinear σ Models, Nucl. Phys. B 152 (1979) 97 [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    E. Rabinovici and S. Samuel, The \( \mathbb{C}{{\mathrm{\mathbb{P}}}^N}^{-1} \) Model: A Strong Coupling Lattice Approach, Phys. Lett. B 101 (1981) 323 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    P. Senjanovic, Path Integral Quantization of Field Theories with Second Class Constraints, Annals Phys. 100 (1976) 227 [Erratum ibid. 209 (1991) 248] [INSPIRE].
  52. [52]
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  54. [54]
    E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [INSPIRE].ADSGoogle Scholar
  55. [55]
    T. Banks and E. Rabinovici, Finite Temperature Behavior of the Lattice Abelian Higgs Model, Nucl. Phys. B 160 (1979) 349 [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    T. Banks, M. Johnson and A. Shomer, A Note on Gauge Theories Coupled to Gravity, JHEP 09 (2006) 049 [hep-th/0606277] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    Y. Nakayama and Y. Nomura, Weak gravity conjecture in the AdS/CFT correspondence, Phys. Rev. D 92 (2015) 126006 [arXiv:1509.01647] [INSPIRE].ADSGoogle Scholar
  58. [58]
    L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].
  59. [59]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    X. Calmet, S.D.H. Hsu and D. Reeb, Quantum gravity at a TeV and the renormalization of Newton’s constant, Phys. Rev. D 77 (2008) 125015 [arXiv:0803.1836] [INSPIRE].ADSGoogle Scholar
  61. [61]
    E. Rabinovici and M. Smolkin, On the dynamical generation of the Maxwell term and scale invariance, JHEP 07 (2011) 040 [arXiv:1102.5035] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    C. Cheung and G.N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    C. Cheung and G.N. Remmen, Infrared Consistency and the Weak Gravity Conjecture, JHEP 12 (2014) 087 [arXiv:1407.7865] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  66. [66]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  67. [67]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  68. [68]
    A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    D.L. Jafferis and S.J. Suh, The Gravity Duals of Modular Hamiltonians, arXiv:1412.8465 [INSPIRE].
  71. [71]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  72. [72]
    S. Carlip and C. Teitelboim, The off-shell black hole, Class. Quant. Grav. 12 (1995) 1699 [gr-qc/9312002] [INSPIRE].
  73. [73]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  74. [74]
    L. Susskind, New Concepts for Old Black Holes, arXiv:1311.3335 [INSPIRE].
  75. [75]
    D. Marolf and J. Polchinski, Gauge/Gravity Duality and the Black Hole Interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  77. [77]
    D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, arXiv:1409.1231 [INSPIRE].

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of Nature, Physics DepartmentHarvard UniversityCambridgeU.S.A.

Personalised recommendations