Journal of High Energy Physics

, 2016:119 | Cite as

Direct and indirect signals of natural composite Higgs models

  • Christoph Niehoff
  • Peter Stangl
  • David M. Straub
Open Access
Regular Article - Theoretical Physics

Abstract

We present a comprehensive numerical analysis of a four-dimensional model with the Higgs as a composite pseudo-Nambu-Goldstone boson that features a calculable Higgs potential and protective custodial and flavour symmetries to reduce electroweak fine-tuning. We employ a novel numerical technique that allows us for the first time to study constraints from radiative electroweak symmetry breaking, Higgs physics, electroweak precision tests, flavour physics, and direct LHC bounds on fermion and vector boson resonances in a single framework. We consider four different flavour symmetries in the composite sector, one of which we show to not be viable anymore in view of strong precision constraints. In the other cases, all constraints can be passed with a sub-percent electroweak fine-tuning. The models can explain the excesses recently observed in WW, WZ, Wh and + resonance searches by ATLAS and CMS and the anomalies in angular observables and branching ratios of rare semi-leptonic B decays observed by LHCb. Solving the B physics anomalies predicts the presence of a dijet or \( t\overline{t} \) resonance around 1 TeV just below the sensitivity of LHC run 1. We discuss the prospects to probe the models at run 2 of the LHC. As a side product, we identify several gaps in the searches for vector-like quarks at hadron colliders, that could be closed by reanalyzing existing LHC data.

Keywords

Beyond Standard Model Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval: quark and lepton masses without a Higgs, Phys. Rev. D 70 (2004) 015012 [hep-ph/0310355] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  9. [9]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05 (2007) 060 [hep-th/0703287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  13. [13]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Bellazzini, C. Csáki and J. Serra, Composite higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].MATHCrossRefGoogle Scholar
  16. [16]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Contino and M. Salvarezza, One-loop effects from spin-1 resonances in Composite Higgs models, JHEP 07 (2015) 065 [arXiv:1504.02750] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. König, M. Neubert and D.M. Straub, Dipole operator constraints on composite Higgs models, Eur. Phys. J. C 74 (2014) 2945 [arXiv:1403.2756] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Azatov, G. Panico, G. Perez and Y. Soreq, On the flavor structure of natural composite Higgs models & top flavor violation, JHEP 12 (2014) 082 [arXiv:1408.4525] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Montull, F. Riva, E. Salvioni and R. Torre, Higgs couplings in composite models, Phys. Rev. D 88 (2013) 095006 [arXiv:1308.0559] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Carena, L. Da Rold and E. Pontón, Minimal composite Higgs models at the LHC, JHEP 06 (2014) 159 [arXiv:1402.2987] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunter’s guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    M. Redi, V. Sanz, M. de Vries and A. Weiler, Strong signatures of right-handed compositeness, JHEP 08 (2013) 008 [arXiv:1305.3818] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J. Li, D. Liu and J. Shu, Towards the fate of natural composite Higgs model through single tsearch at the 8 TeV LHC, JHEP 11 (2013) 047 [arXiv:1306.5841] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting top partner searches in composite Higgs models, Phys. Rev. D 89 (2014) 075001 [arXiv:1308.6601] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Delaunay, T. Flacke, J. Gonzalez-Fraile, S.J. Lee, G. Panico and G. Perez, Light non-degenerate composite partners at the LHC, JHEP 02 (2014) 055 [arXiv:1311.2072] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Reuter and M. Tonini, Top partner discovery in the TtZ channel at the LHC, JHEP 01 (2015) 088 [arXiv:1409.6962] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Gripaios, T. Müller, M.A. Parker and D. Sutherland, Search strategies for top partners in composite Higgs models, JHEP 08 (2014) 171 [arXiv:1406.5957] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the interpretation of top partners searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Backovic, T. Flacke, J.H. Kim and S.J. Lee, Search strategies for TeV scale fermionic top partners with charge 2/3, arXiv:1507.06568 [INSPIRE].
  35. [35]
    K. Agashe, A. Azatov, T. Han, Y. Li, Z.-G. Si and L. Zhu, LHC signals for coset electroweak gauge bosons in warped/composite PGB Higgs models, Phys. Rev. D 81 (2010) 096002 [arXiv:0911.0059] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy vector triplets: bridging theory and data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    K. Lane, A composite Higgs model with minimal fine-tuning: The large-N and weak-technicolor limit, Phys. Rev. D 90 (2014) 095025 [arXiv:1407.2270] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Kaminska, Improving LHC searches for strong EW symmetry breaking resonances, arXiv:1505.04645 [INSPIRE].
  40. [40]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  41. [41]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  45. [45]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  46. [46]
    D.M. Straub, Anatomy of flavour-changing Z couplings in models with partial compositeness, JHEP 08 (2013) 108 [arXiv:1302.4651] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models, JHEP 12 (2008) 046 [arXiv:0806.1230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    C. Csáki, G. Perez, Z. Surujon and A. Weiler, Flavor alignment via shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [INSPIRE].ADSGoogle Scholar
  55. [55]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Redi, Composite MFV and beyond, Eur. Phys. J. C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    O. Matsedonskyi, On flavour and naturalness of composite Higgs models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G. Cacciapaglia et al., Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage, JHEP 06 (2015) 085 [arXiv:1501.03818] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  61. [61]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Carmona and F. Goertz, A naturally light Higgs without light top partners, JHEP 05 (2015) 002 [arXiv:1410.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Niehoff, P. Stangl and D.M. Straub, Violation of lepton flavour universality in composite Higgs models, Phys. Lett. B 747 (2015) 182 [arXiv:1503.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  65. [65]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  66. [66]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  67. [67]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  68. [68]
    J.C. Hardy and I.S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for V ud and CKM unitarity, Phys. Rev. C 91 (2015) 025501 [arXiv:1411.5987] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    Fermilab Lattice, MILC collaboration, J.A. Bailey et al., |V ub| from Bπℓν decays and (2 + 1)-flavor lattice QCD, Phys. Rev. D 92 (2015) 014024 [arXiv:1503.07839] [INSPIRE].
  71. [71]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  72. [72]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, arXiv:1507.04548.
  73. [73]
    BaBar collaboration, J.P. Lees et al., Study of \( \overline{B}\to {X}_u\ell \overline{\nu} \) decays in \( B\overline{B} \) events tagged by a fully reconstructed B-meson decay and determination of |V ub|, Phys. Rev. D 86 (2012) 032004 [arXiv:1112.0702] [INSPIRE].
  74. [74]
    Fermilab Lattice, MILC collaboration, J.A. Bailey et al., Update of |V cb| from the \( \overline{B}\to {D}^{\ast}\ell \overline{\nu} \) form factor at zero recoil with three-flavor lattice QCD, Phys. Rev. D 89 (2014) 114504 [arXiv:1403.0635] [INSPIRE].
  75. [75]
    A. Alberti, P. Gambino, K.J. Healey and S. Nandi, Precision determination of the Cabibbo-Kobayashi-Maskawa element V cb, Phys. Rev. Lett. 114 (2015) 061802 [arXiv:1411.6560] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb| CKM matrix element in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE].
  77. [77]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  78. [78]
    LHCb collaboration, Precision measurement of CP violation in B s0 → J/ψK + K decays, Phys. Rev. Lett. 114 (2015) 041801 [arXiv:1411.3104] [INSPIRE].
  79. [79]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  80. [80]
    J. Charles et al., Current status of the standard model CKM fit and constraints on ΔF = 2 new physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].ADSGoogle Scholar
  81. [81]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A. Orgogozo and S. Rychkov, The S parameter for a light composite Higgs: a dispersion relation approach, JHEP 06 (2013) 014 [arXiv:1211.5543] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
  85. [85]
    A. Freitas, Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson, JHEP 04 (2014) 070 [arXiv:1401.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    M. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].ADSGoogle Scholar
  87. [87]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].ADSGoogle Scholar
  88. [88]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  89. [89]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Brod, A. Greljo, E. Stamou and P. Uttayarat, Probing anomalous \( t\overline{t}Z \) interactions with rare meson decays, JHEP 02 (2015) 141 [arXiv:1408.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, in the proceedings of the Summer School in Theoretical Physics, 68th session, July 28–September 5, Les Houches, France (1997), hep-ph/9806471 [INSPIRE].
  93. [93]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    ETM collaboration, V. Bertone et al., Kaon mixing beyond the SM from N f = 2 tmQCD and model independent constraints from the UTA, JHEP 03 (2013) 089 [Erratum ibid. 1307 (2013) 143] [arXiv:1207.1287] [INSPIRE].
  95. [95]
    N. Carrasco et al., \( {D}^0\hbox{-} {\overline{D}}^0 \) mixing in the standard model and beyond from N f = 2 twisted mass QCD, Phys. Rev. D 90 (2014) 014502 [arXiv:1403.7302] [INSPIRE].ADSGoogle Scholar
  96. [96]
    P. Frings, U. Nierste and M. Wiebusch, Penguin contributions to CP phases in B d,s decays to charmonium, Phys. Rev. Lett. 115 (2015) 061802 [arXiv:1503.00859] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    CMS collaboration, Measurement of the CP-violating weak phase ϕ s and the decay width difference ΔΓs using the Bs0 → J/ψϕ(1020) decay channel in pp collisions at \( \sqrt{s}=8 \) TeV, arXiv:1507.07527 [INSPIRE].
  98. [98]
    ATLAS collaboration, Flavor tagged time-dependent angular analysis of the B sJ/ψϕ decay and extraction of ΔΓs and the weak phase ϕ s in ATLAS, Phys. Rev. D 90 (2014) 052007 [arXiv:1407.1796] [INSPIRE].
  99. [99]
    Z. Bai, N.H. Christ, T. Izubuchi, C.T. Sachrajda, A. Soni and J. Yu, K L -K S mass difference from lattice QCD, Phys. Rev. Lett. 113 (2014) 112003 [arXiv:1406.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    A.J. Buras, L. Merlo and E. Stamou, The impact of flavour changing neutral gauge bosons on \( \overline{B}\to {X}_s\gamma \), JHEP 08 (2011) 124 [arXiv:1105.5146] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  102. [102]
    K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].ADSGoogle Scholar
  103. [103]
    LHCb collaboration, Angular analysis of the B 0K *0 μ + μ decay, arXiv:1512.04442.
  104. [104]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, On the impact of power corrections in the prediction of BK * μ + μ observables, JHEP 12 (2014) 125 [arXiv:1407.8526] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    A. Bharucha, D.M. Straub and R. Zwicky, BVℓ + in the standard model from light-cone sum rules, arXiv:1503.05534 [INSPIRE].
  106. [106]
    LHCb collaboration, Angular analysis and differential branching fraction of the decay B s0 → ϕμ + μ , JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
  107. [107]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  108. [108]
    J. Lyon and R. Zwicky, Resonances gone topsy turvy — The charm of QCD or new physics in bsℓ + ?, arXiv:1406.0566 [INSPIRE].
  109. [109]
    S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the BK * + decays in the large-recoil region: SM challenges and BSM opportunities, arXiv:1412.3183 [INSPIRE].
  110. [110]
    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].ADSGoogle Scholar
  111. [111]
    W. Altmannshofer and D.M. Straub, New physics in BK * μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [Erratum ibid. C 74 (2014) 3179] [arXiv:1310.2478] [INSPIRE].
  113. [113]
    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar
  114. [114]
    D. Ghosh, M. Nardecchia and S.A. Renner, Hint of lepton flavour non-universality in B meson decays, JHEP 12 (2014) 131 [arXiv:1408.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    LHCb, CMS collaboration, V. Khachatryan et al., Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  118. [118]
    C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, B s,d + in the standard model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  120. [120]
    M. de Vries, Four-quark effective operators at hadron colliders, JHEP 03 (2015) 095 [arXiv:1409.4657] [INSPIRE].CrossRefGoogle Scholar
  121. [121]
    CMS collaboration, Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 154 [arXiv:1210.7471] [INSPIRE].
  122. [122]
    ATLAS collaboration, Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 012007 [arXiv:1202.3389] [INSPIRE].
  123. [123]
    CDF collaboration, Search for heavy top t′ → Wq in lepton plus jets events in ∫ℒdt = 4.6 fb −1, CDF-PUB-TOP-PUBLIC-10110 (2010).Google Scholar
  124. [124]
    CMS collaboration, Search for vector-like quarks in final states with a single lepton and jets in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-12-017 (2012).
  125. [125]
    CDF collaboration, Search for new particles decaying to Z 0 +jets, CDF note 85900 (2006).Google Scholar
  126. [126]
    CMS collaboration, Search for a vector-like quark with charge 2/3 in t + Z events from pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 271802 [arXiv:1109.4985] [INSPIRE].
  127. [127]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 015 [arXiv:1505.04306].
  128. [128]
    CMS collaboration, Search for pair-produced vector-like quarks of charge −1/3 in lepton+jets final state in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-12-019 (2012).
  129. [129]
    CMS collaboration, Search for vector-like bpair production with multilepton final states in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-13-003 (2013).
  130. [130]
    CMS collaboration, Search for pair-produced vector-like quarks of charge −1/3 decaying to bH using boosted Higgs jet-tagging in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-14-001 (2014).
  131. [131]
    CMS collaboration, Search for a vector-like quark of charge −1/3 and decaying to bZ in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-EXO-11-066 (2011).
  132. [132]
    CMS collaboration, Search for pair-produced vector-like quarks of charge −1/3 in dilepton+jets final state in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-12-021 (2012).
  133. [133]
    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].
  134. [134]
    CDF collaboration, T. Aaltonen et al., Search for new bottomlike quark pair decays \( Q\overline{Q}\to \left(t{W}^{\mp}\right)\left(\overline{t}{W}^{\pm}\right) \) in same-charge dilepton events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [INSPIRE].
  135. [135]
    CMS collaboration, Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 103 [arXiv:1203.5410] [INSPIRE].
  136. [136]
    CMS collaboration, Search for pair produced fourth-generation up-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with a lepton in the final state, Phys. Lett. B 718 (2012) 307 [arXiv:1209.0471] [INSPIRE].
  137. [137]
    ATLAS collaboration, Search for pair production of heavy top-like quarks decaying to a high-p T W boson and a b quark in the lepton plus jets final state at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 718 (2013) 1284 [arXiv:1210.5468] [INSPIRE].
  138. [138]
    ATLAS collaboration, Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum and jets at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 112011 [arXiv:1503.05425] [INSPIRE].
  139. [139]
    CMS collaboration, Search for top partners with charge 5e/3 in the same-sign dilepton final state, CMS-PAS-B2G-12-012 (2012).
  140. [140]
    CMS collaboration, Search for vector-like top quark partners produced in association with Higgs bosons in the diphoton final state, CMS-PAS-B2G-14-003 (2014).
  141. [141]
    M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  142. [142]
    M. Backović, T. Flacke, S.J. Lee and G. Perez, LHC top partner searches beyond the 2 TeV mass region, JHEP 09 (2015) 022 [arXiv:1409.0409] [INSPIRE].CrossRefGoogle Scholar
  143. [143]
    A. Azatov, D. Chowdhury, D. Ghosh and T.S. Ray, Same sign di-lepton candles of the composite gluons, JHEP 08 (2015) 140 [arXiv:1505.01506] [INSPIRE].CrossRefGoogle Scholar
  144. [144]
    J.P. Araque, N.F. Castro and J. Santiago, Interpretation of vector-like quark searches: heavy gluons in composite Higgs models, JHEP 11 (2015) 120 [arXiv:1507.05628] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    A. Anandakrishnan, J.H. Collins, M. Farina, E. Kuflik and M. Perelstein, Odd top partners at the LHC, arXiv:1506.05130 [INSPIRE].
  146. [146]
    ATLAS collaboration, ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2241 [arXiv:1209.4446] [INSPIRE].
  147. [147]
    ATLAS collaboration, Search for a new resonance decaying to a W or Z boson and a Higgs boson in the \( \ell \ell /\ell \nu /\nu \nu +b\overline{b} \) final states with the ATLAS detector, Eur. Phys. J. C 75 (2015) 263 [arXiv:1503.08089] [INSPIRE].
  148. [148]
    CMS collaboration, Search for massive WH resonances decaying to \( \ell \nu b\overline{b} \) final state in the boosted regime at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-14-010 (2014).
  149. [149]
    ATLAS collaboration, Search for production of WW/WZ resonances decaying to a lepton, neutrino and jets in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 209 [Erratum ibid. C 75 (2015) 370] [arXiv:1503.04677] [INSPIRE].
  150. [150]
    ATLAS collaboration, Search for WZ resonances in the fully leptonic channel using pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 737 (2014) 223 [arXiv:1406.4456] [INSPIRE].
  151. [151]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  152. [152]
    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].
  153. [153]
    CMS collaboration, Search for W′ → tb decays in the lepton + jets final state in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 05 (2014) 108 [arXiv:1402.2176] [INSPIRE].
  154. [154]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].
  155. [155]
    CMS collaboration, Search for narrow high-mass resonances in proton-proton collisions at \( \sqrt{s}=8 \) TeV decaying to a Z and a Higgs boson, Phys. Lett. B 748 (2015) 255 [arXiv:1502.04994] [INSPIRE].
  156. [156]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  157. [157]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  158. [158]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances using lepton plus jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1505.07018.
  159. [159]
    CMS collaboration, Search for pair production of resonances decaying to a top quark plus a jet in final states with two leptons, CMS-PAS-B2G-12-008 (2012).
  160. [160]
    A. Thamm, R. Torre and A. Wulzer, Composite heavy vector triplet in the ATLAS diboson excess, Phys. Rev. Lett. 115 (2015) 221802 [arXiv:1506.08688] [INSPIRE].ADSCrossRefGoogle Scholar
  161. [161]
    A. Carmona, A. Delgado, M. Quirós and J. Santiago, Diboson resonant production in non-custodial composite Higgs models, JHEP 09 (2015) 186 [arXiv:1507.01914] [INSPIRE].ADSCrossRefGoogle Scholar
  162. [162]
    L. Bian, D. Liu and J. Shu, Low scale composite Higgs model and 1.8 ∼ 2 TeV diboson excess, arXiv:1507.06018 [INSPIRE].
  163. [163]
    K. Lane and L. Prichett, Heavy vector partners of the light composite Higgs, Phys. Lett. B 753 (2016) 211 [arXiv:1507.07102] [INSPIRE].CrossRefGoogle Scholar
  164. [164]
    M. Low, A. Tesi and L.-T. Wang, Composite spin-1 resonances at the LHC, Phys. Rev. D 92 (2015) 085019 [arXiv:1507.07557] [INSPIRE].ADSGoogle Scholar
  165. [165]
    S.G. Johnson, The nlopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt (2011).
  166. [166]
    F. Beaujean and S. Jahn, pypmc version 1.0, see website (2015).Google Scholar
  167. [167]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  169. [169]
    J. Barnard and M. White, Collider constraints on tuning in composite Higgs models, JHEP 10 (2015) 072 [arXiv:1507.02332] [INSPIRE].ADSCrossRefGoogle Scholar
  170. [170]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  171. [171]
    C. Delaunay, C. Grojean and G. Perez, Modified Higgs physics from composite light flavors, JHEP 09 (2013) 090 [arXiv:1303.5701] [INSPIRE].ADSCrossRefGoogle Scholar
  172. [172]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics and flavour symmetries after the first LHC phase, JHEP 05 (2014) 105 [arXiv:1402.6677] [INSPIRE].ADSCrossRefGoogle Scholar
  173. [173]
    A. Bevan et al., Standard model updates and new physics analysis with the unitarity triangle fit, arXiv:1411.7233 [INSPIRE].
  174. [174]
    UTfit collaboration, A.J. Bevan et al., The UTfit collaboration average of D meson mixing data: Winter 2014, JHEP 03 (2014) 123 [arXiv:1402.1664] [INSPIRE].
  175. [175]
    M. Blanke, A.J. Buras and S. Recksiegel, Quark flavour observables in the littlest Higgs model with T-parity after LHC Run 1, arXiv:1507.06316 [INSPIRE].
  176. [176]
    Top Quark Working Group collaboration, K. Agashe et al., Working group report: top quark, arXiv:1311.2028 [INSPIRE].
  177. [177]
    K. Mohan and N. Vignaroli, Vector resonances in weak-boson-fusion at future pp colliders, JHEP 10 (2015) 031 [arXiv:1507.03940] [INSPIRE].ADSCrossRefGoogle Scholar
  178. [178]
    ATLAS collaboration, Search for new phenomena in dijet angular distributions in proton-proton collisions at \( \sqrt{s}=8 \) TeV measured with the ATLAS detector, Phys. Rev. Lett. 114 (2015) 221802 [arXiv:1504.00357] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Christoph Niehoff
    • 1
  • Peter Stangl
    • 1
  • David M. Straub
    • 1
  1. 1.Excellence Cluster UniverseTUMGarchingGermany

Personalised recommendations