Advertisement

Journal of High Energy Physics

, 2016:115 | Cite as

Classical limit of irregular blocks and Mathieu functions

  • Marcin Piątek
  • Artur R. Pietrykowski
Open Access
Regular Article - Theoretical Physics

Abstract

The Nekrasov-Shatashvili limit of the \( \mathcal{N}=2 \) SU(2) pure gauge (Ω-deformed) super Yang-Mills theory encodes the information about the spectrum of the Mathieu operator. On the other hand, the Mathieu equation emerges entirely within the frame of two-dimensional conformal field theory (2d CFT) as the classical limit of the null vector decoupling equation for some degenerate irregular block. Therefore, it seems to be possible to investigate the spectrum of the Mathieu operator employing the techniques of 2d CFT. To exploit this strategy, a full correspondence between the Mathieu equation and its realization within 2d CFT has to be established. In our previous paper [1], we have found that the expression of the Mathieu eigenvalue given in terms of the classical irregular block exactly coincides with the well known weak coupling expansion of this eigenvalue in the case in which the auxiliary parameter is the noninteger Floquet exponent. In the present work we verify that the formula for the corresponding eigenfunction obtained from the irregular block reproduces the so-called Mathieu exponent from which the noninteger order elliptic cosine and sine functions may be constructed. The derivation of the Mathieu equation within the formalism of 2d CFT is based on conjectures concerning the asymptotic behaviour of irregular blocks in the classical limit. A proof of these hypotheses is sketched. Finally, we speculate on how it could be possible to use the methods of 2d CFT in order to get from the irregular block the eigenvalues of the Mathieu operator in other regions of the coupling constant.

Keywords

Supersymmetric gauge theory Field Theories in Lower Dimensions Integrable Equations in Physics Conformal and W Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Piatek and A.R. Pietrykowski, Classical irregular block, \( \mathcal{N}=2 \) pure gauge theory and Mathieu equation, JHEP 12 (2014) 032 [arXiv:1407.0305] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    N. Nekrasov and E. Witten, The Omega Deformation, Branes, Integrability and Liouville Theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I, Adv. Theor. Math. Phys. 15 (2011) 471 [arXiv:1005.2846] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    K.K. Kozlowski and J. Teschner, TBA for the Toda chain, arXiv:1006.2906 [INSPIRE].
  5. [5]
    C. Meneghelli and G. Yang, Mayer-Cluster Expansion of Instanton Partition Functions and Thermodynamic Bethe Ansatz, JHEP 05 (2014) 112 [arXiv:1312.4537] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    J. Teschner and G.S. Vartanov, Supersymmetric gauge theories, quantization of \( {\mathrm{\mathcal{M}}}_{\mathrm{flat}} \) and conformal field theory, Adv. Theor. Math. Phys. 19 (2015) 1 [arXiv:1302.3778] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    A. Belavin and V. Belavin, AGT conjecture and Integrable structure of Conformal field theory for c = 1, Nucl. Phys. B 850 (2011) 199 [arXiv:1102.0343] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    V.A. Fateev and A.V. Litvinov, Integrable structure, W-symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    T.-S. Tai, Uniformization, Calogero-Moser/Heun duality and Sutherland/bubbling pants, JHEP 10 (2010) 107 [arXiv:1008.4332] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    K. Muneyuki, T.-S. Tai, N. Yonezawa and R. Yoshioka, Baxter’s TQ equation, SU(N)/SU(2)N − 3 correspondence and Ω-deformed Seiberg-Witten prepotential, JHEP 09 (2011) 125 [arXiv:1107.3756] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    H. Itoyama and R. Yoshioka, Developments of theory of effective prepotential from extended Seiberg-Witten system and matrix models, arXiv:1507.00260 [INSPIRE].
  13. [13]
    R. Poghossian, Deforming SW curve, JHEP 04 (2011) 033 [arXiv:1006.4822] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    F. Fucito, J.F. Morales, D.R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, JHEP 05 (2011) 098 [arXiv:1103.4495] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville Field Theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Quantum Hitchin Systems via beta-deformed Matrix Models, arXiv:1104.4016 [INSPIRE].
  18. [18]
    M. Piatek, Classical conformal blocks from TBA for the elliptic Calogero-Moser system, JHEP 06 (2011) 050 [arXiv:1102.5403] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    F. Ferrari and M. Piatek, Liouville theory, N = 2 gauge theories and accessory parameters, JHEP 05 (2012) 025 [arXiv:1202.2149] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    F. Ferrari and M. Piatek, On a singular Fredholm-type integral equation arising in N = 2 super Yang-Mills theories, Phys. Lett. B 718 (2013) 1142 [arXiv:1202.5135] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    F. Ferrari and M. Piatek, On a path integral representation of the Nekrasov instanton partition function and its Nekrasov-Shatashvili limit, Can. J. Phys. 92 (2014) 267 [arXiv:1212.6787] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    M.-C. Tan, M-Theoretic Derivations of 4d-2d Dualities: From a Geometric Langlands Duality for Surfaces, to the AGT Correspondence, to Integrable Systems, JHEP 07 (2013) 171 [arXiv:1301.1977] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    J. Teschner, Exact results on \( \mathcal{N}=2 \) supersymmetric gauge theories, arXiv:1412.7145.
  24. [24]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in proceedings of XVIth International Congress on Mathematical Physics, Prague, Czech Republic (2009) [arXiv:0908.4052] [INSPIRE].
  26. [26]
    N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  28. [28]
    N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional \( \mathcal{N}=2 \) quiver gauge theories, arXiv:1211.2240 [INSPIRE].
  30. [30]
    N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories, arXiv:1312.6689 [INSPIRE].
  31. [31]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  34. [34]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  35. [35]
    N. Wyllard, A N − 1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    D. Gaiotto, Asymptotically free \( \mathcal{N}=2 \) theories and irregular conformal blocks, J. Phys. Conf. Ser. 462 (2013) 012014 [arXiv:0908.0307] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus conformal block, JETP Lett. 90 (2009) 708 [arXiv:0911.0363] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for N f = 0, 1, 2 antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology, arXiv:1211.1287 [INSPIRE].
  43. [43]
    C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys. 10 (1969) 1115 [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  44. [44]
    G. Başar and G.V. Dunne, Resurgence and the Nekrasov-Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems, JHEP 02 (2015) 160 [arXiv:1501.05671] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.-K. Kashani-Poor and J. Troost, Pure \( \mathcal{N}=2 \) super Yang-Mills and exact WKB, JHEP 08 (2015) 160 [arXiv:1504.08324] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  46. [46]
    M. Piatek, Classical torus conformal block, \( \mathcal{N}={2}^{*} \) twisted superpotential and the accessory parameter of Lamé equation, JHEP 03 (2014) 124 [arXiv:1309.7672] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    E.T. Whittaker, On the General Solution of Mathieu’s Equation, Proc. Edin. Math. Soc. 32 (1914) 75.CrossRefzbMATHGoogle Scholar
  48. [48]
    D. Frenkel, R. Portugal, Algebraic Methods to Compute Mathieu Functions, J. Phys. A 34 (2001) 3541.ADSMathSciNetGoogle Scholar
  49. [49]
    R. Sips, Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales, Trans. Am. Math. Soc. 66 (1949) 93.MathSciNetzbMATHGoogle Scholar
  50. [50]
    H. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, World Scientific (2006).Google Scholar
  51. [51]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    G.W. Moore and N. Seiberg, Polynomial Equations for Rational Conformal Field Theories, Phys. Lett. B 212 (1988) 451 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    G.W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys. 123 (1989) 177 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  54. [54]
    G. Felder, J. Fröhlich and G. Keller, On the Structure of Unitary Conformal Field Theory 1. Existence of Conformal Blocks, Commun. Math. Phys. 124 (1989) 417 [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  55. [55]
    G. Felder, J. Fröhlich and G. Keller, On the Structure of Unitary Conformal Field Theory. 2. Representation Theoretic Approach, Commun. Math. Phys. 130 (1990) 1 [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  56. [56]
    J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    J. Teschner, A Lecture on the Liouville vertex operators, Int. J. Mod. Phys. A 19S2 (2004) 436 [hep-th/0303150] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  58. [58]
    V.G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, Lect. Notes Phys. 94 (1979) 441.CrossRefADSGoogle Scholar
  59. [59]
    B.L. Feigin and D.B. Fuks, Invariant skew symmetric differential operators on the line and verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982) 114 [Funkt. Anal. Ego Prilozh. 16 (1982) 47] [INSPIRE].
  60. [60]
    B.L. Feigin, D.B. Fuchs, Representations of the Virasoro algebra, in Representations of Lie groups and related topics, A.M. Vershik and D.P. Zhelobenko eds., Gordon and Breach, London U.K. (1990).Google Scholar
  61. [61]
    C.B. Thorn, Computing the Kac Determinant Using Dual Model Techniques and More About the No-Ghost Theorem, Nucl. Phys. B 248 (1984) 551 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  62. [62]
    V.G. Kac and M. Wakimoto, Unitarizable highest weight representations of the Virasoro, Neveu-Schwarz and Ramond algebras, Lect. Notes Phys. 261 (1986) 345.CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    V.G. Kac, A.K. Raina, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Adv. Ser. Math. Phys. 2, World Scientific Publishing (2013).Google Scholar
  64. [64]
    B. Feigin and D. Fuchs, Representations of the Virasoro algebra, Adv. Stud. Contemp. Math. 7 (1990) 465.MathSciNetGoogle Scholar
  65. [65]
    E. Felinska, Z. Jaskolski and M. Kosztolowicz, Whittaker pairs for the Virasoro algebra and the Gaiotto-BMT states, J. Math. Phys. 53 (2012) 033504 [Erratum ibid. 53 (2012) 129902] [arXiv:1112.4453] [INSPIRE].
  66. [66]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.CrossRefMathSciNetGoogle Scholar
  67. [67]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  68. [68]
    A.B. Zamolodchikov, Conformal Field Theory And Critical Phenomena In Two-Dimensional Systems, Sov. Sci. Rev. A 10 (1989) 269.Google Scholar
  69. [69]
    D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    A. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, Sov. Phys. JEPT 63 (1986) 1061.MathSciNetGoogle Scholar
  71. [71]
    A. Litvinov, S. Lukyanov, N. Nekrasov and A. Zamolodchikov, Classical Conformal Blocks and Painleve VI, JHEP 07 (2014) 144 [arXiv:1309.4700] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  72. [72]
    N.W. McLachlan, Theory and application of Mathieu functions, Clarendon Press, Oxford U.K. (1947).zbMATHGoogle Scholar
  73. [73]
    S. Yanagida, Whittaker vectors of the Virasoro algebra in terms of Jack symmetric polynomial, J.Algebra 333 (2011) 273.CrossRefMathSciNetzbMATHGoogle Scholar
  74. [74]
    L. Hadasz, Z. Jaskolski and M. Piatek, Analytic continuation formulae for the BPZ conformal block, Acta Phys. Polon. B 36 (2005) 845 [hep-th/0409258] [INSPIRE].ADSGoogle Scholar
  75. [75]
    W. Boenkost and F. Constantinescu, Vertex operators in Hilbert space, J. Math. Phys. 34 (1993) 3607 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  76. [76]
    W. Boenkost, Vertex-Operatoren, Darstellungen der Virasoro-Algebra und konforme Quantenfeldtheorie, dissertation, Frankfurt am Main, Germany (1994), hep-th/9412231.
  77. [77]
    W. Boenkost, Vertex operators are not closeable, Rev. Math. Phys. 7 (1995) 51 [hep-th/9401004] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  78. [78]
    F. Constantinescu and G. Scharf, Smeared and unsmeared chiral vertex operators, Commun. Math. Phys. 200 (1999) 275 [hep-th/9712174] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  79. [79]
    C. Rim and H. Zhang, Classical Virasoro irregular conformal block, JHEP 07 (2015) 163 [arXiv:1504.07910] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  80. [80]
    C. Rim and H. Zhang, Classical Virasoro irregular conformal block II, JHEP 09 (2015) 097 [arXiv:1506.03561] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev Integral Discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of SzczecinSzczecinPoland
  2. 2.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland
  3. 3.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations