Advertisement

Journal of High Energy Physics

, 2016:102 | Cite as

Towards model-independent exclusion of light Stops

  • Alexander Belyaev
  • Verónica Sanz
  • Marc ThomasEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Understanding the extent to which experimental searches are sensitive to Light Stops (LST) scenarios is essential to resolve questions about naturalness, electroweak baryo-genesis and Dark Matter. In this paper we characterize the reach on LST scenarios in two ways. We extend experimental searches to cover specific gaps in the LST parameter space, showing for the first time that assuming a single decay channel one can exclude the region of \( {m}_{\tilde{t}}<{m}_{\mathrm{top}} \), which in its turn excludes electroweak baryogenesis in MSSM. Also, we explore the extent to which searches are weakened in a more generic scenario when more than one decay channel takes place, even after their combination. This study highlights the need for a more comprehensive exploration of the LST parameter space.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Yu. A. Golfand and E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452] [INSPIRE].
  2. [2]
    P. Ramond, Dual theory for free fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    A. Neveu and J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.-L. Gervais and B. Sakita, Field theory interpretation of supergauges in dual models, Nucl. Phys. B 34 (1971) 632 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Wess and B. Zumino, A Lagrangian model invariant under supergauge transformations, Phys. Lett. B 49 (1974) 52 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009, CERN, Geneva Switzerland (2014).
  8. [8]
    ATLAS collaboration, Measurement of the Higgs boson mass from the Hγγ and HZZ →4ℓ channels with the ATLAS detector using 25fb−1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].
  9. [9]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].
  12. [12]
    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].
  13. [13]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].
  14. [14]
    J.L. Feng, K.T. Matchev and D. Sanford, Focus point supersymmetry redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H. Baer, V. Barger and D. Mickelson, How conventional measures overestimate electroweak fine-tuning in supersymmetric theory, Phys. Rev. D 88 (2013) 095013 [arXiv:1309.2984] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light stops, light staus and the 125 GeV Higgs, JHEP 08 (2013) 087 [arXiv:1303.4414] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Belyaev, S. Khalil, S. Moretti and M.C. Thomas, Light sfermion interplay in the 125 GeV MSSM Higgs production and decay at the LHC, JHEP 05 (2014) 076 [arXiv:1312.1935] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Fan and M. Reece, A new look at Higgs constraints on stops, JHEP 06 (2014) 031 [arXiv:1401.7671] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Katz, M. Perelstein, M.J. Ramsey-Musolf and P. Winslow, Stop-catalyzed baryogenesis beyond the MSSM, Phys. Rev. D 92 (2015) 095019 [arXiv:1509.02934] [INSPIRE].ADSGoogle Scholar
  22. [22]
    B. Henning, X. Lu and H. Murayama, How to use the standard model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    A. Drozd, J. Ellis, J. Quevillon and T. You, Comparing EFT and exact one-loop analyses of non-degenerate stops, JHEP 06 (2015) 028 [arXiv:1504.02409] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Huo, Effective field theory of integrating out sfermions in the MSSM: complete one-loop analysis, arXiv:1509.05942 [INSPIRE].
  25. [25]
    G. Bélanger, D. Ghosh, R. Godbole and S. Kulkarni, Light stop in the MSSM after LHC Run 1, JHEP 09 (2015) 214 [arXiv:1506.00665] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].
  27. [27]
    J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].
  28. [28]
    C. Balázs, M. Carena, A. Menon, D.E. Morrissey and C.E.M. Wagner, The supersymmetric origin of matter, Phys. Rev. D 71 (2005) 075002 [hep-ph/0412264] [INSPIRE].
  29. [29]
    J. Ellis, K.A. Olive and J. Zheng, The extent of the stop coannihilation strip, Eur. Phys. J. C 74 (2014) 2947 [arXiv:1404.5571] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    M. Carena, M. Quirós, A. Riotto, I. Vilja and C.E.M. Wagner, Electroweak baryogenesis and low-energy supersymmetry, Nucl. Phys. B 503 (1997) 387 [hep-ph/9702409] [INSPIRE].
  32. [32]
    T. Cohen, D.E. Morrissey and A. Pierce, Electroweak baryogenesis and Higgs signatures, Phys. Rev. D 86 (2012) 013009 [arXiv:1203.2924] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Curtin, P. Jaiswal and P. Meade, Excluding electroweak baryogenesis in the MSSM, JHEP 08 (2012) 005 [arXiv:1203.2932] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, MSSM electroweak baryogenesis and LHC data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    ATLAS collaboration, Summary plots from the ATLAS supersymmetry physics group webpage, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/ SUSY/index.html#ATLAS SUSY Stop tLSP.
  36. [36]
    CMS collaboration, Summary of comparison plots in simplified models spectra for the 8 TeV dataset webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/SUSYSMSSummary Plots8TeV.
  37. [37]
    ATLAS experiment — SUSY summary plots webpage, https://twiki.cern.ch/twiki/bin/ view/AtlasPublic/SupersymmetryPublicResults.
  38. [38]
    ATLAS collaboration, Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 109 (2012) 211802 [arXiv:1208.1447] [INSPIRE].
  39. [39]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions using 4.7 fb−1 of ATLAS data, Phys. Rev. Lett. 109 (2012) 211803 [arXiv:1208.2590] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC, JHEP 11 (2012) 094 [arXiv:1209.4186] [INSPIRE].
  41. [41]
    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].
  42. [42]
    ATLAS collaboration, Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 09 (2014) 015 [arXiv:1406.1122] [INSPIRE].
  43. [43]
    ATLAS collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 06 (2014) 124 [arXiv:1403.4853] [INSPIRE].
  44. [44]
    ATLAS collaboration, Measurement of spin correlation in top-antitop quark events and search for top squark pair production in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Phys. Rev. Lett. 114 (2015) 142001 [arXiv:1412.4742] [INSPIRE].
  45. [45]
    ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].
  46. [46]
    K. Rolbiecki and J. Tattersall, Refining light stop exclusion limits with W + W cross sections, Phys. Lett. B 750 (2015) 247 [arXiv:1505.05523] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    CMS collaboration, Search for top squarks decaying to a charm quark and a neutralino in events with a jet and missing transverse momentum, CMS-PAS-SUS-13-009, CERN, Geneva Switzerland (2013).
  48. [48]
    ALEPH collaboration, A. Heister et al., Search for charginos nearly mass degenerate with the lightest neutralino in e + e collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 533 (2002) 223 [hep-ex/0203020] [INSPIRE].
  49. [49]
    ALEPH collaboration, R. Barate et al., Search for pair production of longlived heavy charged particles in e + e annihilation, Phys. Lett. B 405 (1997) 379 [hep-ex/9706013] [INSPIRE].
  50. [50]
    ALEPH collaboration, A. Heister et al., Search for gauge mediated SUSY breaking topologies in e + e collisions at center-of-mass energies up to 209 GeV, Eur. Phys. J. C 25 (2002) 339 [hep-ex/0203024] [INSPIRE].
  51. [51]
    ALEPH collaboration, R. Barate et al., Search for charginos and neutralinos in e + e collisions at center-of-mass energies near 183 GeV and constraints on the MSSM parameter space, Eur. Phys. J. C 11 (1999) 193 [INSPIRE].
  52. [52]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].
  53. [53]
    CMS collaboration, Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2015) 116 [arXiv:1503.08037] [INSPIRE].
  54. [54]
    G. Hiller and Y. Nir, Measuring flavor mixing with minimal flavor violation at the LHC, JHEP 03 (2008) 046 [arXiv:0802.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G. Hiller, J.S. Kim and H. Sedello, Collider signatures of minimal flavor mixing from stop decay length measurements, Phys. Rev. D 80 (2009) 115016 [arXiv:0910.2124] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Muhlleitner and E. Popenda, Light stop decay in the MSSM with minimal flavour violation, JHEP 04 (2011) 095 [arXiv:1102.5712] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Krizka, A. Kumar and D.E. Morrissey, Very light scalar top quarks at the LHC, Phys. Rev. D 87 (2013) 095016 [arXiv:1212.4856] [INSPIRE].ADSGoogle Scholar
  58. [58]
    G. Bélanger, D. Ghosh, R. Godbole, M. Guchait and D. Sengupta, Probing the flavor violating scalar top quark signal at the LHC, Phys. Rev. D 89 (2014) 015003 [arXiv:1308.6484] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R. Gröber, M.M. Mühlleitner, E. Popenda and A. Wlotzka, Light stop decays: implications for LHC searches, Eur. Phys. J. C 75 (2015) 420 [arXiv:1408.4662] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Grober, M. Muhlleitner, E. Popenda and A. Wlotzka, Light stop decays into \( Wb{\tilde{\chi}}_1^0 \) near the kinematic threshold, Phys. Lett. B 747 (2015) 144 [arXiv:1502.05935] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].
  63. [63]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].
  64. [64]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].
  68. [68]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun. 82 (1994) 74 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.S. Belyaev et al., CompHEP-PYTHIA interface: integrated package for the collision events generation based on exact matrix elements, hep-ph/0101232 [INSPIRE].
  71. [71]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  72. [72]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  73. [73]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  75. [75]
    R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    Z. Han and A. Katz, Stealth stops and spin correlation: a Snowmass white paper, arXiv:1310.0356 [INSPIRE].
  77. [77]
    M. Czakon, A. Mitov, M. Papucci, J.T. Ruderman and A. Weiler, Closing the stop gap, Phys. Rev. Lett. 113 (2014) 201803 [arXiv:1407.1043] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    OPAL collaboration, G. Abbiendi et al., Search for scalar top and scalar bottom quarks at LEP, Phys. Lett. B 545 (2002) 272 [Erratum ibid. B 548 (2002) 258] [hep-ex/0209026] [INSPIRE].
  79. [79]
    L3 collaboration, P. Achard et al., Search for scalar leptons and scalar quarks at LEP, Phys. Lett. B 580 (2004) 37 [hep-ex/0310007] [INSPIRE].
  80. [80]
    DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].
  81. [81]
    ALEPH collaboration, A. Heister et al., Search for scalar quarks in e + e collisions at \( \sqrt{s} \) up to 209 GeV, Phys. Lett. B 537 (2002) 5 [hep-ex/0204036] [INSPIRE].
  82. [82]
    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [arXiv:1506.08616] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Alexander Belyaev
    • 1
    • 2
  • Verónica Sanz
    • 3
  • Marc Thomas
    • 1
    • 2
    Email author
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Particle Physics DepartmentRutherford Appleton Laboratory, Harwell OxfordDidcotU.K.
  3. 3.Department of Physics and AstronomyUniversity of SussexBrightonU.K.

Personalised recommendations