Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

Abstract

We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    A. Yu. Alekseev, V.V. Cheianov and J. Fröhlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly, Phys. Rev. Lett. 81 (1998) 3503 [cond-mat/9803346] [INSPIRE].

  4. [4]

    D.T. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [INSPIRE].

  5. [5]

    M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev. D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].

  6. [6]

    A. Vilenkin, Macroscopic parity violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation, Phys. Rev. D 20 (1979) 1807 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. [7]

    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov and M.V. Ulybyshev, Numerical evidence of the axial magnetic effect, Phys. Rev. D 88 (2013) 071501 [arXiv:1303.6266] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    D. Kharzeev, Parity violation in hot QCD: why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].

  14. [14]

    D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    G.E. Volovik and A. Vilenkin, Macroscopic parity violating effects and He-3-A, Phys. Rev. D 62 (2000) 025014 [hep-ph/9905460] [INSPIRE].

  17. [17]

    G.E. Volovik, The universe in a helium droplet, Clarendon Press, Oxford U.K. (2003).

    MATH  Google Scholar 

  18. [18]

    Q. Li et al., Observation of the chiral magnetic effect in ZrTe5, arXiv:1412.6543 [INSPIRE].

  19. [19]

    C. Zhang et al., Detection of chiral anomaly and valley transport in Dirac semimetals, arXiv:1504.07698 [INSPIRE].

  20. [20]

    T. Liang et al., Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd 3 As 2, Nature Mater. 14 (2015) 280 [arXiv:1404.7794].

    ADS  Article  Google Scholar 

  21. [21]

    X. Huang et al., Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs, Phys. Rev. X 5 (2015) 031023 [arXiv:1503.01304].

    Google Scholar 

  22. [22]

    M.N. Chernodub, A. Cortijo, A.G. Grushin, K. Landsteiner and M.A.H. Vozmediano, Condensed matter realization of the axial magnetic effect, Phys. Rev. B 89 (2014) 081407 [arXiv:1311.0878] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    X.-G. Huang, Simulating chiral magnetic and separation effects with spin-orbit coupled atomic gases, arXiv:1506.03590 [INSPIRE].

  24. [24]

    A. Vilenkin and D.A. Leahy, Parity nonconservation and the origin of cosmic magnetic fields, Astrophys. J. 254 (1982) 77 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. Boyarsky, J. Fröhlich and O. Ruchayskiy, Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe, Phys. Rev. Lett. 108 (2012) 031301 [arXiv:1109.3350] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    J. Charbonneau and A. Zhitnitsky, Topological currents in neutron stars: kicks, precession, toroidal fields and magnetic helicity, JCAP 08 (2010) 010 [arXiv:0903.4450] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Ohnishi and N. Yamamoto, Magnetars and the chiral plasma instabilities, arXiv:1402.4760 [INSPIRE].

  28. [28]

    M. Kaminski, C.F. Uhlemann, M. Bleicher and J. Schaffner-Bielich, Anomalous hydrodynamics kicks neutron stars, arXiv:1410.3833 [INSPIRE].

  29. [29]

    D.E. Kharzeev, Topology, magnetic field and strongly interacting matter, Ann. Rev. Nucl. Part. Sci. 65 (2015) 193 [arXiv:1501.01336] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    D.E. Kharzeev, The chiral magnetic effect and anomaly-induced transport, Prog. Part. Nucl. Phys. 75 (2014) 133 [arXiv:1312.3348] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    K. Landsteiner, E. Megias and F. Pena-Benitez, Anomalous transport from Kubo formulae, Lect. Notes Phys. 871 (2013) 433 [arXiv:1207.5808] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    V.I. Zakharov, Chiral magnetic effect in hydrodynamic approximation, arXiv:1210.2186 [INSPIRE].

  33. [33]

    J. Liao, Anomalous transport effects and possible environmental symmetry ‘violation’ in heavy-ion collisions, Pramana 84 (2015) 901 [arXiv:1401.2500] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    G.M. Newman, Anomalous hydrodynamics, JHEP 01 (2006) 158 [hep-ph/0511236] [INSPIRE].

  35. [35]

    D.E. Kharzeev and H.-U. Yee, Chiral magnetic wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Normal ground state of dense relativistic matter in a magnetic field, Phys. Rev. D 83 (2011) 085003 [arXiv:1101.4954] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    Y. Burnier, D.E. Kharzeev, J. Liao and H.-U. Yee, Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions, Phys. Rev. Lett. 107 (2011) 052303 [arXiv:1103.1307] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    STAR collaboration, L. Adamczyk et al., Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions, Phys. Rev. Lett. 114 (2015) 252302 [arXiv:1504.02175] [INSPIRE].

  39. [39]

    Y. Hatta, A. Monnai and B.-W. Xiao, Elliptic flow difference of charged pions in heavy-ion collisions, arXiv:1507.04690 [INSPIRE].

  40. [40]

    Y. Jiang, X.-G. Huang and J. Liao, Chiral vortical wave and induced flavor charge transport in a rotating quark-gluon plasma, Phys. Rev. D 92 (2015) 071501 [arXiv:1504.03201] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    N. Yamamoto, Chiral Alfvén wave in anomalous hydrodynamics, Phys. Rev. Lett. 115 (2015) 141601 [arXiv:1505.05444] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    X.-G. Huang and J. Liao, Axial current generation from electric field: chiral electric separation effect, Phys. Rev. Lett. 110 (2013) 232302 [arXiv:1303.7192] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    A. Jimenez-Alba, K. Landsteiner and L. Melgar, Anomalous magnetoresponse and the Stückelberg axion in holography, Phys. Rev. D 90 (2014) 126004 [arXiv:1407.8162] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    M. Stephanov, H.-U. Yee and Y. Yin, Collective modes of chiral kinetic theory in a magnetic field, Phys. Rev. D 91 (2015) 125014 [arXiv:1501.00222] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    H.-U. Yee and Y. Yin, Realistic implementation of chiral magnetic wave in heavy ion collisions, Phys. Rev. C 89 (2014) 044909 [arXiv:1311.2574] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    D. Frenklakh, Chiral magnetic-vortical wave, arXiv:1510.09198 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. N. Chernodub.

Additional information

ArXiv ePrint: 1509.01245

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chernodub, M.N. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media. J. High Energ. Phys. 2016, 100 (2016). https://doi.org/10.1007/JHEP01(2016)100

Download citation

Keywords

  • Anomalies in Field and String Theories
  • Quark-Gluon Plasma