Resummation ambiguities in the Higgs transverse-momentum spectrum in the Standard Model and beyond

  • E. Bagnaschi
  • R. V. Harlander
  • H. Mantler
  • A. Vicini
  • M. Wiesemann
Open Access
Regular Article - Theoretical Physics

Abstract

We study the prediction for the Higgs transverse momentum distribution in gluon fusion and focus on the problem of matching fixed- and all-order perturbative results. The main sources of matching ambiguities on this distribution are investigated by means of a twofold comparison. On the one hand, we present a detailed qualitative and quantitative comparison of two recently introduced algorithms for determining the matching scale [1, 2]. On the other hand, we apply the results of both methods to three widely used approaches for the resummation of logarithmically enhanced contributions at small transverse momenta: the MC@NLO and POWHEG Monte Carlo approaches, and analytic resummation. While the three sets of results are largely compatible in the low-p region, they exhibit sizable differences at large p . We show that these differences can be significantly reduced by suitable modifications of formally subleading terms in the Monte Carlo implementations. We apply our study to the Standard Model Higgs boson and to the neutral Higgs bosons of the Two-Higgs-Doublet Model for representative scenarios of the parameter space, where the top- and bottom-quark diagrams enter the cross section at different strengths.

Keywords

Higgs Physics Beyond Standard Model Resummation QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E. Bagnaschi and A. Vicini, The Higgs transverse momentum distribution in gluon fusion as a multiscale problem, arXiv:1505.00735 [INSPIRE].
  3. [3]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  4. [4]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  5. [5]
    ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [arXiv:1506.05669] [INSPIRE].
  6. [6]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the Standard Model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurements of the total and differential Higgs boson production cross sections combining the Hγγ and HZZ → 4ℓ decay channels at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 091801 [arXiv:1504.05833] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV, arXiv:1508.07819 [INSPIRE].
  9. [9]
    U. Langenegger, M. Spira, A. Starodumov and P. Trueb, SM and MSSM Higgs boson production: spectra at large transverse momentum, JHEP 06 (2006) 035 [hep-ph/0604156] [INSPIRE].
  10. [10]
    O. Brein and W. Hollik, Distributions for MSSM Higgs boson + jet production at hadron colliders, Phys. Rev. D 76 (2007) 035002 [arXiv:0705.2744] [INSPIRE].ADSGoogle Scholar
  11. [11]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev. D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Azatov and A. Paul, Probing Higgs couplings with high p T Higgs production, JHEP 01 (2014) 014 [arXiv:1309.5273] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP 08 (2014) 053 [arXiv:1308.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev. D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].ADSGoogle Scholar
  17. [17]
    U. Langenegger, M. Spira and I. Strebel, Testing the Higgs boson coupling to gluons, arXiv:1507.01373 [INSPIRE].
  18. [18]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    U. Baur and E.W.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W.-Y. Keung and F.J. Petriello, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev. D 80 (2009) 013007 [arXiv:0905.2775] [INSPIRE].ADSGoogle Scholar
  21. [21]
    O. Brein, Electroweak and bottom quark contributions to Higgs boson plus jet production, Phys. Rev. D 81 (2010) 093006 [arXiv:1003.4438] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].
  23. [23]
    V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].
  24. [24]
    C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].
  25. [25]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, JHEP 11 (2014) 150 [arXiv:1408.6836] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard processes in quantum chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Parisi and R. Petronzio, Small transverse momentum distributions in hard processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Curci, M. Greco and Y. Srivastava, QCD jets from coherent states, Nucl. Phys. B 159 (1979) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  34. [34]
    J.C. Collins and D.E. Soper, Back-to-back jets: Fourier transform from B to K-transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Kodaira and L. Trentadue, Summing soft emission in QCD, Phys. Lett. B 112 (1982) 66 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Kodaira and L. Trentadue, Single logarithm effects in electron-positron annihilation, Phys. Lett. B 123 (1983) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Altarelli, R.K. Ellis, M. Greco and G. Martinelli, Vector boson production at colliders: a theoretical reappraisal, Nucl. Phys. B 246 (1984) 12 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].
  40. [40]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
  41. [41]
    S. Mantry and F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Becher, M. Neubert and D. Wilhelm, Higgs-boson production at small transverse momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].ADSGoogle Scholar
  44. [44]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  45. [45]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  47. [47]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  48. [48]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    MoRe-SusHi (Momentum Resummed Supersymmetric Higgs) webpage, http://sushi.hepforge.org/moresushi.html.
  52. [52]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    POWHEG BOX webpage, http://powhegbox.mib.infn.it/.
  54. [54]
    H. Mantler and M. Wiesemann, Hadronic Higgs production through NLO + PS in the SM, the 2HDM and the MSSM, Eur. Phys. J. C 75 (2015) 257 [arXiv:1504.06625] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    aMCSusHi: hadronic Higgs production through NLO+PS in the SM, the 2HDM and the MSSM webpage, https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/aMCSushi.
  56. [56]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  58. [58]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The q T spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104] [INSPIRE].
  59. [59]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Höche, Y. Li and S. Prestel, Higgs-boson production through gluon fusion at NNLO QCD with parton showers, Phys. Rev. D 90 (2014) 054011 [arXiv:1407.3773] [INSPIRE].ADSGoogle Scholar
  62. [62]
    K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140 [arXiv:1501.04637] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh and S. Zuberi, Matching fully differential NNLO calculations and parton showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  66. [66]
    R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].
  67. [67]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].
  68. [68]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].
  69. [69]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881 (2014) 414 [arXiv:1311.1654] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Frixione and B.R. Webber, The MC@NLO event generator, hep-ph/0207182 [INSPIRE].
  72. [72]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    T. Sjöstrand, A model for initial state parton showers, Phys. Lett. B 157 (1985) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Frixione and B.R. Webber, The MC@NLO 3.3 event generator, hep-ph/0612272 [INSPIRE].
  75. [75]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator, Comput. Phys. Commun. 181 (2010) 833 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  78. [78]
    R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. Stal, Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the two-Higgs-doublet model, arXiv:1312.5571 [INSPIRE].
  79. [79]
    H.E. Haber and O. Stål, New LHC benchmarks for the CP-conserving two-Higgs-doublet model, Eur. Phys. J. C 75 (2015) 491 [arXiv:1507.04281] [INSPIRE].
  80. [80]
    J. Bernon, J.F. Gunion, Y. Jiang and S. Kraml, Light Higgs bosons in two-Higgs-doublet models, Phys. Rev. D 91 (2015) 075019 [arXiv:1412.3385] [INSPIRE].ADSGoogle Scholar
  81. [81]
    R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark annihilation: transverse momentum distribution at NNLO+NNLL, Phys. Rev. D 90 (2014) 015017 [arXiv:1403.7196] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, JHEP 02 (2015) 132 [arXiv:1409.5301] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  86. [86]
    P. Nason and C. Oleari, Generation cuts and Born suppression in POWHEG, arXiv:1303.3922 [INSPIRE].
  87. [87]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    S. Höche, F. Krauss and M. Schönherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev. D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE].ADSGoogle Scholar
  89. [89]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schönherr, F. Krauss and T. Plehn, Mass effects in the Higgs-gluon coupling: boosted vs off-shell production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • E. Bagnaschi
    • 1
  • R. V. Harlander
    • 2
  • H. Mantler
    • 3
    • 4
    • 5
  • A. Vicini
    • 6
  • M. Wiesemann
    • 7
  1. 1.DESYHamburgGermany
  2. 2.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany
  3. 3.TH Division, Physics DepartmentCERNGeneva 23Switzerland
  4. 4.Institute for Theoretical Physics (ITP), Karlsruhe Institute of TechnologyKarlsruheGermany
  5. 5.Institute for Nuclear Physics (IKP), Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  6. 6.Tif lab, Dipartimento di FisicaUniversità di Milano and INFN, Sezione di MilanoMilanoItaly
  7. 7.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations