Gravitational memory, BMS supertranslations and soft theorems

  • Andrew Strominger
  • Alexander ZhiboedovEmail author
Open Access
Regular Article - Theoretical Physics


The transit of a gravitating radiation pulse past arrays of detectors stationed near future null infinity in the vacuum is considered. It is shown that the relative positions and clock times of the detectors before and after the radiation transit differ by a BMS supertranslation. An explicit expression for the supertranslation in terms of moments of the radiation energy flux is given. The relative spatial displacement found for a pair of nearby detectors reproduces the well-known and potentially measurable gravitational memory effect. The displacement memory formula is shown to be equivalent to Weinberg’s formula for soft graviton production.


Scattering Amplitudes Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Ya.B. Zeldovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron. 18 (1974) 17.Google Scholar
  2. [2]
    V.B. Braginsky and L.P. Grishchuk, Kinematic resonance and memory effect in free mass gravitational antennas, Sov. Phys. JETP 62 (1985) 427 [Zh. Eksp. Teor. Fiz. 89 (1985) 744] [INSPIRE].
  3. [3]
    V.B. Braginsky and K.S. Thorne, Gravitational-wave bursts with memory and experimental prospects, Nature 327 (1987) 123.ADSCrossRefGoogle Scholar
  4. [4]
    M. Ludvigsen, Geodesic deviation at null infinity and the physical effects of very long wave gravitational radiation, Gen. Rel. Grav. 21 (1989) 1205 [INSPIRE].ADSzbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett. 67 (1991) 1486 [INSPIRE].ADSzbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    A.G. Wiseman and C.M. Will, Christodoulou’s nonlinear gravitational wave memory: evaluation in the quadrupole approximation, Phys. Rev. D 44 (1991) 2945 [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    K.S. Thorne, Gravitational-wave bursts with memory: the Christodoulou effect, Phys. Rev. D 45 (1992) 520.ADSMathSciNetGoogle Scholar
  8. [8]
    L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev. D 46 (1992) 4304 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    L. Bieri, P. Chen and S.-T. Yau, The electromagnetic Christodoulou memory effect and its application to neutron star binary mergers, Class. Quant. Grav. 29 (2012) 215003 [arXiv:1110.0410] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Tolish and R.M. Wald, Retarded fields of null particles and the memory effect, Phys. Rev. D 89 (2014) 064008 [arXiv:1401.5831] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Tolish, L. Bieri, D. Garfinkle and R.M. Wald, Examination of a simple example of gravitational wave memory, Phys. Rev. D 90 (2014) 044060 [arXiv:1405.6396] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.B. Wang et al., Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array, Mon. Not. Roy. Astron. Soc. 446 (2015) 1657 [arXiv:1410.3323] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Favata, The gravitational-wave memory effect, Class. Quant. Grav. 27 (2010) 084036 [arXiv:1003.3486] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  15. [15]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  16. [16]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Ashtekar, Geometry and Physics of Null Infinity, arXiv:1409.1800 [INSPIRE].
  19. [19]
    J. Winicour, Global aspects of radiation memory, Class. Quant. Grav. 31 (2014) 205003 [arXiv:1407.0259] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton University Press, Princeton U.S.A. (1993).zbMATHGoogle Scholar
  21. [21]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman Company, San Francisco U.S.A. (1973).Google Scholar
  23. [23]
    J. Maldacena and A. Zhiboedov, Notes on soft factors, unpublished (2012).Google Scholar
  24. [24]
    F.K. Manasse and C.W. Misner, Fermi normal coordinates and some basic concepts in differential geometry, J. Math. Phys. 4 (1963) 735 [INSPIRE].ADSzbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    E. Poisson, A. Pound and I. Vega, The motion of point particles in curved spacetime, Living Rev. Rel. 14 (2011) 7 [arXiv:1102.0529] [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.

Personalised recommendations