Advertisement

Holographic complexity and spacetime singularities

  • José L. F. BarbónEmail author
  • Eliezer Rabinovici
Open Access
Regular Article - Theoretical Physics

Abstract

We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

Keywords

AdS-CFT Correspondence Black Holes Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].
  7. [7]
    M. Van Raamsdonk, A patchwork description of dual spacetimes in AdS/CFT, Class. Quant. Grav. 28 (2011) 065002 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    L. Susskind, The typical-state paradox: diagnosing horizons with complexity, arXiv:1507.02287 [INSPIRE].
  12. [12]
    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  13. [13]
    G. Evenbly and G. Vidal, Tensor network states and geometry, J. Stat. Phys. 145 (2011) 891 [arXiv:1106.1082].ADSzbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  15. [15]
    X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
  16. [16]
    J.I. Latorre and G. Sierra, Holographic codes, arXiv:1502.06618 [INSPIRE].
  17. [17]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Susskind, Computational complexity and black hole horizons, arXiv:1403.5695 [INSPIRE].
  19. [19]
    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
  21. [21]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    L. Susskind, Entanglement is not enough, arXiv:1411.0690 [INSPIRE].
  23. [23]
    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Gravity dual of quantum information metric, Phys. Rev. Lett. 115 (2015) 261602 [arXiv:1507.07555] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Alishahiha, Holographic complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity equals action, arXiv:1509.07876 [INSPIRE].
  26. [26]
    N. Engelhardt, T. Hertog and G.T. Horowitz, Holographic signatures of cosmological singularities, Phys. Rev. Lett. 113 (2014) 121602 [arXiv:1404.2309] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Engelhardt, T. Hertog and G.T. Horowitz, Further holographic investigations of Big Bang singularities, JHEP 07 (2015) 044 [arXiv:1503.08838] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev. D 74 (2006) 026002 [hep-th/0602107] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    A. Awad, S.R. Das, S. Nampuri, K. Narayan and S.P. Trivedi, Gauge theories with time dependent couplings and their cosmological duals, Phys. Rev. D 79 (2009) 046004 [arXiv:0807.1517] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Bañados, Constant curvature black holes, Phys. Rev. D 57 (1998) 1068 [gr-qc/9703040] [INSPIRE].
  31. [31]
    M. Bañados, A. Gomberoff and C. Martinez, Anti-de Sitter space and black holes, Class. Quant. Grav. 15 (1998) 3575 [hep-th/9805087] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys. B 195 (1982) 481 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    O. Aharony, M. Fabinger, G.T. Horowitz and E. Silverstein, Clean time dependent string backgrounds from bubble baths, JHEP 07 (2002) 007 [hep-th/0204158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    V. Balasubramanian and S.F. Ross, The dual of nothing, Phys. Rev. D 66 (2002) 086002 [hep-th/0205290] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    S.F. Ross and G. Titchener, Time-dependent spacetimes in AdS/CFT: bubble and black hole, JHEP 02 (2005) 021 [hep-th/0411128] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    V. Balasubramanian, K. Larjo and J. Simon, Much ado about nothing, Class. Quant. Grav. 22 (2005) 4149 [hep-th/0502111] [INSPIRE].ADSzbMATHMathSciNetCrossRefGoogle Scholar
  38. [38]
    J. He and M. Rozali, On bubbles of nothing in AdS/CFT, JHEP 09 (2007) 089 [hep-th/0703220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Buchel, Gauge/gravity correspondence in accelerating universe, Phys. Rev. D 65 (2002) 125015 [hep-th/0203041] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    A. Buchel, P. Langfelder and J. Walcher, On time dependent backgrounds in supergravity and string theory, Phys. Rev. D 67 (2003) 024011 [hep-th/0207214] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057 [arXiv:0904.3922] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Bernamonti and B. Craps, D-brane potentials from multi-trace deformations in AdS/CFT, JHEP 08 (2009) 112 [arXiv:0907.0889] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J.L.F. Barbon and E. Rabinovici, Holography of AdS vacuum bubbles, JHEP 04 (2010) 123 [arXiv:1003.4966] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    D. Marolf, M. Rangamani and M. Van Raamsdonk, Holographic models of de Sitter QFTs, Class. Quant. Grav. 28 (2011) 105015 [arXiv:1007.3996] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].
  46. [46]
    D. Harlow and L. Susskind, Crunches, hats and a conjecture, arXiv:1012.5302 [INSPIRE].
  47. [47]
    J.L.F. Barbon and E. Rabinovici, AdS crunches, CFT falls and cosmological complementarity, JHEP 04 (2011) 044 [arXiv:1102.3015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    J.L.F. Barbon and E. Rabinovici, Conformal complementarity maps, JHEP 12 (2013) 023 [arXiv:1308.1921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    J.L.F. Barbon and E. Rabinovici, Geometry and quantum noise, Fortsch. Phys. 62 (2014) 626 [arXiv:1404.7085] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    V.A. Belinsky, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970) 525 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [INSPIRE].ADSzbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Instituto de Física Teórica IFT UAM/CSICMadridSpain
  2. 2.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  3. 3.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations